Previous | Contents | Next

NOTE: This tutorial describes an old version of Idris. For an up to date tutorial, see here.

Useful Data Types

Edwin Brady

List and Vect | Maybe | Tuples and Dependent Pairs

Idris includes a number of useful data types and library functions (see the lib/ directory in the distribution). This chapter describes a few of these. The functions described here are imported automatically by every Idris program, as part of prelude.idr.

List and Vect

We have already seen the List and Vec data types:

data List a = Nil | Cons a (List a);
data Vect : Set -> Nat -> Set where
   VNil : Vect a O
 | (::) : a -> Vect a k -> Vect a (S k);

The library also defines a number of functions for manipulating these types. map and vmap apply a function to every element of a list or vector respectively.

map : (a -> b) -> (List a) -> (List b);
map f Nil = Nil;
map f (Cons x xs) = Cons (f x) (map f xs);

vmap : (a -> b) -> (Vect a n) -> (Vect b n);
vmap f VNil = VNil;
vmap f (x :: xs) = f x :: vmap f xs;

For example, to double every element in a vector of integers:

intVec = 1 :: 2 :: 3 :: 4 :: 5 :: VNil;
double : Int -> Int;
double x = x*2;

Idrisvmap double intVec
2 :: 4 :: 6 :: 8 :: 10 :: VNil

For more details of the functions available on List and Vect, look in list.idr and vect.idr respectively. Functions include filtering, appending, reversing, and so on. Also remember that Idris is at an early stage of development, so if you don't see the function you need, please feel free to add it and submit a patch!

Aside: Anonymous functions and operator sections

There are actually neater ways to write the above expression. One way would be to use an anonymous function:

Idrisvmap (\x => x*2) intVec
2 :: 4 :: 6 :: 8 :: 10 :: VNil

The notation \x => val constructs an anonymous function which takes one argument, x and returns val. Anonymous functions may take several arguments, separated by commas, e.g. \x,y,z => val. Arguments may also be given explicit types, e.g. \x : Int => x*2

We could also use an operator section:

Idrisvmap (*2) intVec
2 :: 4 :: 6 :: 8 :: 10 :: VNil

(*2) is shorthand for a function which multiplies a number by 2. It expands to \x => x*2. Similarly, (2*) would expand to \x => 2*x.


Maybe describes an optional value. Either there is a value of the given type, or there isn't:

data Maybe a = Just a | Nothing;

Maybe is one way of giving a type to an operation that may fail. For example, looking something up in a List (rather than a vector) may result in an out of bounds error:

list_lookup : Nat -> List a -> Maybe a;
list_lookup _     Nil         = Nothing;
list_lookup O     (Cons x xs) = Just x;
list_lookup (S k) (Cons x xs) = list_lookup k xs;

The maybe function is used to process values of type Maybe, either by applying a function to the value, if there is one, or by providing a default value:

maybe : Maybe a -> |(default:b) -> (a -> b) -> b;

The vertical bar | before the default value is a laziness annotation. Normally expressions are evaluated before being passed to a function. This is typically the most efficient behaviour. However, in this case, the default value might not be used and if it is a large expression, evaluating it will be wasteful. The | annotation tells the compiler not to evaluate the argument until it is needed.

Tuples and Dependent Pairs

Values can be paired with the following data type:

data Pair a b = mkPair a b;

As syntactic sugar, we can write (a & b) for Pair a b and (x,y) for mkPair x y. Tuples can contain an arbitrary number of values, represented as nested pairs.

fred : (String & Int);
fred = ("Fred", 42);

jim : (String & Int & String);
jim = ("Jim", 25, "Cambridge");

Dependent pairs

Dependent pairs (Sigma types) allow the type of the second element of a pair to depend on the value of the first element:

data Sigma : (A:Set)->(P:A->Set)->Set where
   Exists : {P:A->Set} -> (a:A) -> P a -> Sigma A P;

Again, there is syntactic sugar for this. (a : A ** P) is the type of a pair of A and P, where the name a can occur inside P. <| a, p |> constructs a value of this type. For example, we can pair a number with a Vect of a particular length.

vec : (n : Nat ** Vect Int n);
vec = <| S (S O), 3 :: 4 :: VNil |>;

The type checker could of course infer the value of the first element from the length of the vector. We can write an underscore _ in place of values which we expect the type checker to fill in, so the above definition could also be written as:

vec : (n : Nat ** Vect Int n);
vec = <| _, 3 :: 4 :: VNil |>;

We might also prefer to omit the type of the first element of the pair, since, again, it can be inferred:

vec : (n ** Vect Int n);
vec = <| _, 3 :: 4 :: VNil |>;

One use for dependent pairs is to return values of dependent types where the index is not necessarily known in advance. For example, if we filter elements out of a Vect according to some predicate, we will not know in advance what the length of the resulting vector will be:

vfilter : (a -> Bool) -> Vect a n -> (p ** Vect a p);

If the Vect is empty, the result is easy:

vfilter p VNil = <| _ , VNil |>;

In the :: case, we need to inspect the result of a recursive call to vfilter to extract the length and the vector from the result. To do this, we use with notation. with allows pattern matching on intermediate values:

vfilter p (x :: xswith vfilter p xs {
   | <| _ , xs' |> = if (p xthen <| _ , x :: xs' |> else <| _ , xs' |>;

We will see more on with notation later.

Source for this chapter

Previous | Contents | Next