
Practical Erasure in Dependently Typed Languages

Matúš Tejiščák Edwin Brady
University of St Andrews

{mt65,ecb10}@st-andrews.ac.uk

Abstract
Full-spectrum dependently typed languages and tools, such as
Idris and Agda, have recently been gaining interest due to the
expressive power of their type systems, in particular their ability to
describe precise properties of programs which can be verified by
type checking.

With full-spectrum dependent types, we can treat types as first-
class language constructs: types can be parameterised on values,
and types can be computed like any other value. However, this
power brings new challenges when compiling to executable code.
Without special treatment, values which exist only for compile-time
checking may leak into compiled code, even in relatively simple
cases. Previous attempts to tackle the problem are unsatisfying in
that they either fail to erase all irrelevant information, require user
annotation or in some other way restrict the expressive power of the
language.

In this paper, we present a new erasure mechanism based on
whole-program analysis, currently implemented in the Idris pro-
gramming language. We give some simple examples of dependently
typed functional programs with compile-time guarantees of their
properties, but for which existing erasure techniques fall short. We
then describe our new analysis method and show that with it, erasure
can lead to asymptotically faster code thanks to the ability to erase
not only proofs but also indices.

1. Introduction
Dependent types give significant expressive power to a program-
ming language. Full-spectrum dependent types, as implemented in
Idris [3] and Agda [17], treat types as first-class language constructs.
This means that types can be built by computation just like any other
value, leading to powerful techniques for generic programming.
Furthermore, it means that types can be parameterised on values,
meaning that strong, explicit, checkable relationships can be stated
between values and used to verify properties of programs at compile-
time. This expressive power brings new challenges, however, when
compiling programs. In principle, extra static information ought
to make compiling efficient code easier, because the compiler has
more information to work with. In practice, however, without special
treatment it not only makes programs slower, but also have worse
time and space complexity. While the former is perhaps tolerable

[Copyright notice will appear here once ’preprint’ option is removed.]

in the interests of strong correctness guarantees, the latter is clearly
unacceptable!

To illustrate the problem, consider a program in Idris which
compresses a list of characters by run-length encoding – that is,
we store the list as characters paired with a number of repetitions,
such that e.g. “aaaabbbbb” is stored as 4 ‘a‘, 5 ‘b‘. (Note that for
brevity, we typeset character lists as string literals.) We can express
the relationship between a compressed list, and the original list, by
parameterising the compressed form over the original list:

data RLE : List Char→ ? where
REnd : RLE []
RChar : (n : N)→ (c : Char)→ (rs : RLE xs)

→ RLE (replicate n c++ xs)

The type states that if a compressed list begins with n copies of c,
followed by a compressed list rs , then the original list must take
the form replicate n c ++ xs . As a result, any implementation of
an encoder into this form guarantees to produce a sound (but not
necessarily unique) encoding:

rle : (xs : List Char)→ RLE xs

Then, the compressed form of the list “aaaabbbbb” might be
represented as:

RChar 4 ‘a‘ (RChar 5 ‘b‘ REnd)

If, however, we look closely at the constructors of the RLE family,
we notice a potential problem. There is an implicit argument xs in
the type of RChar, required for type checking:

RChar : {xs : List Char} → (n : N)→ (c : Char)
→ (rs : RLE xs)→ RLE (replicate n c++ xs)

So, internally, the compressed form of the list “aaaabbbbb” above
would really be represented as:

RChar “bbbbb” 4 ‘a‘ (RChar “” 5 ‘b‘ REnd)

In other words, all but the prefix of the list needs to be stored in its
uncompressed form! And, in fact, the problem gets worse: because
the index of RChar is a function, building this implicit value may
result in computation at run-time which is ultimately unnecessary.

It gets even worse when we look at the full type signature of the
decompression function:

unrle : {xs : List Char} → RLE xs → List Char

In order to decompress a RLE-encoded list, in the internal
representation, the caller must also provide the decompressed list in
the implicit argument!

1.1 Contributions
The challenge, in short, is to identify a phase distinction between
compile-time and run-time objects. Traditionally, this is simple:

1 2015/2/28

types are compile-time only, values are run-time, and erasure
consists simply of erasing types. In a dependently typed language,
however, erasing types alone is not enough. In this paper, we present
an analysis which calculates the phase distinction for dependently
typed programs, making the following principal contributions:

• We present a whole program analysis which identifies the parts
of functions and data structures which are irrelevant to the result
produced by the main program, and justify its soundness.

• We describe a core language consisting of bindings and case
trees on which the analysis can be applied, which is not specific
to Idris and can therefore be used to implement erasure analysis
for other languages.

• We demonstrate the effectiveness of the erasure analysis with
several examples, showing that it not only reduces run-time
(and in some cases, time and space complexity) but also that it
(perhaps surprisingly) reduces compile times.

Unlike previous approaches to the problem, our analysis can
erase not only proofs but also indices. It is entirely automatic; no
user annotations are required and no expressive power is lost. In
the rest of this paper, we will describe the core calculus on which
the analysis is applied (Section 3), the algorithm itself (Section 4),
justify its soundness (Section 5) and present benchmarks for both
compile time and run time (Section 6).

2. Motivating Examples
In this section, we present two small example programs, typical of
the kind of programs we write in Idris but nevertheless demonstrat-
ing the difficulties encountered in identifying a phase distinction.
Additionally, we briefly discuss alternative approaches to erasure
analysis and discuss where they fall short.

2.1 Palindromes
Full dependent types allow us to express facts about data, such as
the following predicate, where Palindrome xs expresses that the
list xs is palindromic:

data Palindrome : List a→ ? where
PNil : Palindrome []

POne : (x : a)→ Palindrome [x]
PTwo : (x : a)→ (u : Palindrome xs)

→ Palindrome (x :: xs ++ [x])

When we write a function which tests whether a list is palindromic,
rather than writing boolean we can return an instance of this
predicate, if it holds:

isPalindrome : DecEq a
⇒ (xs : List a)→ Maybe (Palindrome xs)

Here, DecEq is a type class constraint which expresses that the
parameter a has a decidable equality. In fact, Palindrome is a special
case of a “U-list”, which is a view [15] of lists giving access to the
first and last elements:

data U : List a→ ? where
Nil : U []

One : (x : a)→ U [x]
Two : (x : a)→ (u : U xs)→ (y : a)

→ U (x :: xs ++ [y])

A view gives an alternative way of matching on a structure, using
the type to preserve the link with the original structure. It is then
easy to write isPalindrome as a total function by writing a covering
function for this view, toU, then checking corresponding first and
last elements, combining the following two functions:

toU : (xs : List a)→ U xs
isPalinU : DecEq a⇒ {xs : List a} → U xs

→ Maybe (Palindrome xs)

Unfortunately, while bringing out this structure explicitly leads to
a clean definition, looking at the type of Two shows that there is an
overhead:

Two : {a : ?} → {xs : List a}
→ (x : a)→ (u : U xs)→ (y : a)
→ U (x :: xs ++ [y])

The original lists are present in the structure, as well as the U-
list, and without special treatment, the O(n)-sized index xs will be
recomputed and stored repeatedly in each of the O(n) steps while
running isPalindrome. The U-abstraction comes at a significant cost:
increasing the time and memory complexity of any algorithm using
it.

2.2 Binary Adder
We can define unary natural numbers as a data type in Idris, with an
addition function defined by pattern matching and recursion:

data N = Z | S N

(+) : N→ N→ N
(+) Z y = y
(+) (S k) y = S (k + y)

Indeed, these are defined as part of the Idris prelude, imported in
every Idris program by default. Unary naturals are not intended for
computation, but rather for capturing structure, since it is relatively
easy to reason about natural number arithmetic (by induction). There
are also primitive numeric types (Int, Float, etc), but we could define
a binary number type indexed over the corresponding N as follows:

data Bit : N→ ? where
I : Bit (S Z)
O : Bit Z

data Bin : N→ N→ ? where
Zero : Bin Z Z
(#) : Bin w n→ Bit b→ Bin (S w) (b+ n+ n)

Here, Bit x is a 1-bit number indexed by a value x which can be
either zero or one, and Bin w n is a w-bit number indexed by
its width in bits and the value it represents, n. An add-with-carry
function for binary numbers would have the following type:

add : Bit c→ Bin w p→ Bin w q → Bin (S w) (c+ p+ q)

Furthermore, any implementation would also respect the rules for
unary addition, as explicitly stated in the type, and with a proof that
Bin w n is unique for any given n, we can build proofs about add
directly from proofs about +.

Unfortunately, # has three implicit N arguments:

(#) : {w : N} → {n : N} → {b : N}
→ Bin w n→ Bit b→ Bin (S w) (b+ n+ n)

In a naı̈ve implementation, therefore, the memory footprint of a
binary number is exponential with respect to the number of bits and
the function add will also implicitly carry out the corresponding
unary addition, since the unary number index is required for the
type!

2.3 Possible solutions
There are two obvious possible solutions to this problem, and some
less obvious possibilities. Two things we might try are:

2 2015/2/28

D ::= name x0 x1 . . . xn = T (1)

T ::= c | v | name
| T T | λv : T. T | Πv : T. T
| let v : T = T in T

|

case T of
C v0

0 v
1
0 . . . vn0

0 ⇒ T
C v0

1 v
1
1 . . . vn1

1 ⇒ T
...

C v0
k v

1
k . . . v

nk
k ⇒ T

(2)

Figure 1. Term syntax of the core calculus TTcase.

1. Erase all implicit arguments, and make it a compile time error to
try to access them.

2. Erase all arguments which appear as indices, and make it a
compile time error to try to access them.

To some extent, these approaches would allow us to preserve a
clear phase distinction, similar to the separation between types
and kinds in Haskell. Unfortunately, they would also limit the
expressivity of the language. In practice, we often want run-time
access to implicit arguments, leaving them implicit because they
can be inferred by the machine, but using them for more efficient
run-time computation. We believe this should be the programmer’s
choice, not the compiler’s. For example, we can project the length
out of a Vect directly by bringing the implicit n into scope:

length : Vect n a→ N
length {n} xs = n

The forcing optimisation [4] erases arguments from data structures
which can be determined from their indices. This is also limited,
however, in that it can only erase arguments which are guarded
by constructors hence is insufficient for any of the RLE, U or Bin
structures.

Agda and Coq each use programmer annotations (irrelevance
annotations in the former, a separate universe Prop for proofs in
the latter) and we would like to avoid this, because they limit the
expressive power of the language. What’s worse, both approaches
are good at erasing proofs but they are not useful for erasing indices,
which is what we need to do here.

A more promising approach, which we take as a starting point, is
whole-program erasure analysis. We develop a method that coincides
with existing approaches [16] in certain cases but also extends
beyond them, namely in support of data structures with pattern
matching and case analysis and we put it into practice for a complete
dependently typed programming language.

3. Elaboration
Human-writable Idris programs are elaborated into the computer-
friendly core calculus TT. Elaborated programs contain all infor-
mation spelled out in detail so that they are machine-checkable and
usable for further processing in the compiler.

3.1 The core calculi TTcase and IR(�)

The core type theory of Idris, TT, allows function bodies only in the
form of a single case tree with terms in the leaves. Case-expressions
can inspect only variables and terms cannot contain case-expressions
— these must be lifted out to separate functions if they occur in user

T ::= c | v | name
| � — only in IR�

| T T | λv. T
| let v = T in T

|

case T of
C v0

0 v
1
0 . . . vn0

0 ⇒ T
C v0

1 v
1
1 . . . vn1

1 ⇒ T
...

C v0
k v

1
k . . . v

nk
k ⇒ T

Figure 2. Term syntax of the intermediate representations IR(�).
Our analysis and erasure works with this language.

code. In this paper, we describe a more general approach for a core
type theory TTcase. In TTcase, an elaborated program consists of a
collection of function definitions and data constructor declarations;
the syntax of a single definition is shown in Equation (1) in Figure 1.
The variables xi stand for formal parameters of the function named
name and its body is a term of the core type theory TTcase.

Equation (2) shows that a TTcase term is either a constant, a
variable, a global name; an application, a lambda or a pi; a let-
binding; or a case-expression, whose individual branches refer to
data constructors C with their fields being pattern-matched as vij .

After typechecking (and other related checks), the program
is translated to the intermediate representation, where the shape
of function definitions is the same, except that their bodies are
expressed as terms of the intermediate language IR, shown in
Figure 2.

The language IR differs from TTcase mainly in being untyped;
while individual values certainly do have types, these are no longer
indicated in the syntax of the language, or checked again. This
allows us to remove parts of the program arbitrarily, without worries
about any typing constraints that would be invalidated by removing
parts of the program.

Pruning takes a program in IR and produces a program expressed
in IR�, a language identical to IR, except for an added symbol �,
which represents an erased value. These are typically arguments
to functions which are guaranteed never to be needed at run-time.
Arities of functions are preserved; pruning may however reduce
arities of data constructors, by removing any arguments which are
guaranteed never to be accessed at run-time.

4. The Erasure Algorithm
Given an Idris program in the intermediate representation, our
erasure algorithm aims to erase as much computation from it as
possible, without changing the meaning of the program. First, we
calculate what we can erase by means of usage analysis, then we
perform the erasure by pruning the program.

4.1 Overview
We do not require any erasure annotations from the user, although
they may choose to do so (see Section 4.7). Instead, we automatically
infer what to erase, as far as possible. We say “as far as possible”
because we do not necessarily find the most optimal solution due
to the halting problem. Hence we informally define unused as
“provably not necessary for runtime” and used as “not unused”.
This will be made more precise in Section 5.1.

We exploit the observation that functions use only some of their
arguments (i.e. either by case-analysis or passing into usage-creating
primitive functions.) Likewise, some fields of data constructors
are never inspected. If we run usage analysis to find out what is

3 2015/2/28

Idris

TTcase

IR

IR�

Binary executable

elaboration

typechecking + translation to IR

pruning

code generation

usage analysis

scope of this paper

Figure 3. The big picture

guaranteed never to be be inspected at runtime, we can erase those
pieces (arguments of functions and fields of data constructors) in
the pruning phase.

The whole erasure process happens as pictured in Figure 3. First,
usage analysis traverses programs expressed in IR and calculates
which parts of the program may be necessary for runtime and which
may be safely erased. Then this information enters the pruning
procedure from IR to IR�.

4.2 Basic notions
The algorithm analyses definitions of functions. Starting from main,
it searches the call graph to discover which functions are used in the
program. For every function definition it builds a set of implications
describing argument usage. The set of implications collected from
the whole program is later solved to obtain the minimal consistent
usage pattern.

Let us introduce a propositional variable for every node. A node
is a pair containing a name of a function or a data constructor, and
a natural number, which denotes the index of an argument of the
name. Together, the two components of the pair identify a single
item that can be erased or not. For the argument number i of the
function f , let us call the corresponding variable fi, and use f? to
denote the return value of f (which also may or may not be used). In
the following text, we will use the name fi for both the propositional
variable and the node (function or constructor argument) itself.

The meaning of these propositional variables is: If and only if fi
is true, then the function f uses its i-th argument (if f is a function),
or the data constructor f needs to store its i-th argument (if f is a
data constructor).

We will proceed to build a set of implications. For this purpose,
we only need implications in the form of Horn clauses, i.e.:

fi ←− gj , hk, ml, . . .

The above implication says that if nodes gj , hk, and ml, etc, are
all found to be used, the node fi has to be considered to be used
as well. In the implementation, we additionally store a reason with
every implication for purposes of error reporting, as described in
Section 4.7.2. Let us summarise the terminology:

Global name A name of a function, data constructor, or other
globally defined item, as opposed to e.g. lambda-bound names,
which are not global names.

Node A pair (name, i) of a global name and argument number,
as described above. A node stands for a position that can be
considered erased or not.

Jf x0 x1 . . . xn = Bf K = JBf K{x0 7→{f0},...,xn 7→{fn}}
{f?} (3)

JcKΓ
G = ∅ — constant

JvKΓ
G = {ni ←− G | ni ∈ Γv \G} — variable

JnameKΓ
G = {name? ←− G} — global

(4)

Jname T0 T1 . . . TnKΓ
G

= {name? ←− G} ∪
⋃n

i=0 JTiKΓ
{namei}∪G

(5)

JF T0 T1 . . . TnKΓ
G = JF KΓ

G ∪
⋃n

i=0 JTiKΓ
G (6)

Jlet x = T inMKΓ
G = JT KΓ

G ∪ JMKΓ∪{x 7→∅}
G

Jλx. MKΓ
G = JMKΓ∪{x 7→∅}

G

(7)

Figure 4. Implication gathering: ordinary terms

Set of dependencies A set of nodes, usually associated with a
variable. When that variable is recognised as used, it follows that
all nodes from the set must be considered used as well.

Guards A set of nodes whose usage is prerequisite for recognising
something else as used.

Implication A formula of the form ni ←− G. Its meaning is “if
every guard (node) from G is recognised as used, then ni must
also be considered used.”

4.3 Implication gathering
As mentioned in Section 4.2, implication gathering combines a
simple search of the call graph with inductive analysis of definitions
of the functions encountered.

We describe implication gathering from a definition of a single
function by defining the operation J−KΓ

G, which takes a term and
returns a set of implications. The indices G and Γ are contexts: G
being a set of guards; Γ being an environment that maps variable
names to their dependency sets. We will explain these as we go.

Figure 4 and Figure 5 summarise the implication gathering
process for ordinary terms (i.e. variables, applications, and bindings)
and case expressions, respectively.

4.3.1 Function definitions
First, we η-expand function definitions, if applicable, generating
fresh names for the new arguments. The rule is that any name defined
with a functional type should have the corresponding number of
binders in the outermost layers in its definition.

For example, instead of the function makeEven : N → N,
defined as makeEven = double ◦ halve, we analyse the definition
makeEven x = (double ◦ halve) x, where x is a fresh variable.

The context Γ in J−KΓ
G is used to keep track of every variable

occurring in the function being analysed and to remember which
dependencies it draws in, i.e. which nodes should be marked as used
if this variable is found to be used. We call this set of nodes the
dependency set of the variable, and thus the context Γ consists of
assignments of the form x 7→ {ni,mj , . . .}, where the dependency
set {ni,mj , . . .} is assigned to the variable x. We write Γx to denote
the set of dependencies (nodes) assigned to x.

4 2015/2/28

u

wwwww
v

case T of
C0 y

0
0 y

1
0 . . . yn0

0 ⇒ B0

C1 y
0
1 y

1
1 . . . yn1

1 ⇒ B1

...
Ck y

0
k y

1
k . . . y

nk
k ⇒ Bk

}

�����
~

Γ

G

= JT KΓ
G ∪

k⋃
i=0

JBiKΓ∪Vi
G Vi =

{
yji 7→

{
(Ci)j

} ∣∣∣ j ∈ 0 . . . ni

}
(8)

s
case x of
C y0 y1 . . . yn ⇒ B

{Γ

G

= JBKΓ∪V
G V =

{
yj 7→ {Cj} ∪ Γx

∣∣∣ j ∈ 0 . . . ni

}
(9)

Figure 5. Implication gathering: case expressions

For example, the variable x in the above function makeEven
is the first argument of the function so its usage should mark
makeEven0 as used: (x 7→ {makeEven0}) ∈ Γ. A variable may
draw in a non-singleton set of dependencies if it arises from nested
pattern matching.

Hence, we start by defining the set of implications for a single
function definition, as shown in Equation (3) in Figure 4. In the
equation, f is the name of the function being defined, x0 . . . xn are
its formal arguments, and Bf is its body. We start the analysis of
the body by defining G = {f?}, which says that every implication
arising from this function will contain f?, the node representing
the return value of f , among its assumptions. We also define Γ =
{x0 7→ {f0}, . . . , xn 7→ {fn}}, which assigns the appropriate
dependency set {fi} to every formal argument xi.

4.3.2 Terms
Equation (4) shows how to build implication sets for constants, local
variables and global names. In an implementation, for instance our
implementation in Idris, there may be other cases to consider, such
as de Bruijn indexed variables. We omit these additional cases in
this description but, for example, with de Bruijn indices the idea
is that we keep an additional context: a stack of dependency sets.
(Recall that Γ is a mapping from names to dependency sets.)

4.3.3 Applications
Applications are central to our notion of erasure. If we view
functions/operators as tree nodes with operands for children, then
erasure corresponds to pruning the tree. For example, consider when
the variable x is used in the following piece of code:

f x = g y (h x) z

If g does not use its second argument, the whole expression (h x)
can be discarded to save computation, which means that x is not
used here. Even if g1 is used, it may be the case that h does not use
its first argument, which would make x unused again. In other cases
however, we have to mark x as used.

As we have seen, the usage of x depends on g1 and h0, and every
occurrence of every variable has got such a set of “preconditions”
derived from its enclosing environment, from the path down the
tree of applications. We call this set of preconditions guards and
maintain it as the index G in J−KΓ

G.
We can generalise the above example and write a general rule for

application of global names (global functions or data constructors),
as shown in Equation (5). In this case, for every actual argument
Ti, we include its set of implications, guarded by fi; this condition
added to G expresses that these implications come into effect only
if the i-th argument of f is used.

If the inspected term is an application of anything other than a
global name, such as a local variable or a more complex expression,
we assume nothing is erased. In practice, the only difference between

applying a global name and applying anything else is that we extend
the set of guards G in the operands when applying global names.

Also, since Idris uses strict evaluation, we do not perform
deep analysis to find whether arguments of non-global applications
are used, but consider them used because they will be evaluated
regardless. This is a simplification; we could extend our erasure
to erase from internal lambdas and let-bindings in future work.
This decision has not proved to be problematic in practice because
explicitly mentioned data is usually not intended to be erased.

Therefore, in cases other than application of a global name
(such as application of a local variable or a lambda) we include
the dependencies for the operator and all operands, as shown in
Equation (6).

4.3.4 Lambdas and let-bindings
Lambdas and let-bindings are analysed as described in Equation (7).
We opt for the easy strict approach here, as mentioned above: all
lambda bindings are considered used at the point of application and
all let-bound values are considered used at the point of let-binding.
This allows us to leave the dependency sets Γx of let-bound and
lambda-bound variables empty because usage of the bound variables
does not affect what needs to be evaluated.

4.3.5 Case expressions
Analysis of the most general case expression is shown in Equa-
tion (8) in Figure 5. What contributes to its set of implications is the
inspected term T and each branch of the case expression.

Notice that in each branch, the context Γ is extended with Vi,
which describes the new variables introduced by pattern matching.
Vi expresses the fact that the value yji is obtained by reading the
j-th field of the constructor Ci, represented by the node (Ci)j .

In Equation (9), we include one special case of case-expressions:
when the case expression inspects a variable with only one possible
branch, we defer usage of the inspected variable to the point of usage
of the projected variables. The reason is that if all projections end
up in erased positions or not used at all (for illustration, this usually
happens when matching on refl), we want to keep the inspected
variable marked as unused as well. In such cases, the compiler must
prune unused case-matches in order to keep the inspected expression
unevaluated.

We could do the same for singleton case-expressions inspecting
arbitrary terms but that would require a more elaborate formulation
of dependency sets than we currently have. Therefore, these terms
will not be erased. This is sufficient for Idris, since after elaboration
case-expressions inspect variables, never compound terms.

4.4 Special cases
In a complete language implementation, there are additional lan-
guage elements that interact with erasure. For Idris this includes
primitive types, compiler builtin functions, and type classes.

5 2015/2/28

4.4.1 Primitives and builtins
The above erasure mechanism generates implications only from
function definitions. However, primitives, foreign calls and compiler
builtins have no in-language definitions and they would therefore
end up recognised as not using anything.

For that reason, we introduce usage postulates, which assert
which arguments of which builtins are used. In the case of Idris
there are usage postulates built into the compiler, and they can be
introduced by a programmer with a compiler pragma.

The most important usage postulate states that the entry point of
the program is the function main:

main? ←− ∅ (10)

4.4.2 Type classes
Our erasure scheme cannot yet express higher-order erasure patterns,
such as data constructors taking functions with erased arguments, or
functions taking functions with erased arguments. One important in-
stance of this pattern is type classes. In Idris, these are implemented
as records containing (usually) functional fields. However, we would
like to erase from methods of type classes in the same way as from
normal functions.

The approach we take is to create special nodes for each argu-
ment of each method of each type class. Class methods have no
definition; the only functions available come from the instances. We
define the usage pattern of a method as the union of usage of all its
instances mentioned in the program.

For example, we define the usage of + as the union of the usage
of +N, +Int, +Double, etc. More precisely, we define the usage of a
method as the union of the usage of whatever is ever passed to the
instance constructor. In Idris, this may include runtime-constructed
instances.

4.5 Dependency solving
The output of implication gathering after processing all function
definitions from the set F of functions in the program, including
all postulates or extra implications from Section 4.4, is a set of
implications O, where every implication has the form ni ←− G:

O def≡ Postulates ∪
⋃
f∈F

JfK (11)

Recall from Section 4.2 that we identify every node with a proposi-
tional variable of the same name. Hence O is also a logic program,
from which we can tell which propositional variables must be true
(which arguments of which functions are used and thus cannot be
erased.) We can then declare all other nodes unused and perform the
corresponding erasure.

Therefore, we run forward chaining on the set of implications
O; the output of this step is the set of used nodes, which we call U .
Formally, U is the minimal set such that:

G ⊆ U ⇒ ni ∈ U for all (ni ←− G) ∈ O (12)

4.6 Erasure
The actual removal of irrelevant computation happens by pruning
the intermediate representation of programs, transforming a program
expressed in IR to a program expressed in IR�. We represent pruning
by the operation b−cU , defined in Figure 6.

4.6.1 Simple terms
Equation (13) shows how to prune simple terms, such as constants,
variables, global names, applications, lambdas and let-expressions.
These do not change beyond being pruned recursively.

There are two exceptions to the application rule: applications
of globally named functions are pruned according to Equation (14)

bccU
def≡ c

bvcU
def≡ v

bncU
def≡ n

bλv. T cU
def≡ λv. bT cU

blet v = T inMcU
def≡ let v = bT cU in bMcU

bF T0 . . . TncU
def≡ bF cU bT0cU . . . bTncU

where
F is not a global name

(13)

bname T0 T1 . . . TncU
def≡ name bX0cU . . . bXncU

where

Xi
def≡

� if (namei /∈ U)

∧
(
i < arity(name)

)
Ti otherwise

(14)

bC T0 T1 . . . TncU
def≡ bCcU bTa0cU . . . bTakcU

where

{ai}ki=0

def≡ maximal subsequence of 0 . . . n
where ∀i. Cai ∈ U

bCcU
def≡ a reduced variant of C

restricted to k + 1 fields

(15)

case T of
C0 y

0
0 y

1
0 . . . yn0

0 ⇒ B0

C1 y
0
1 y

1
1 . . . yn1

1 ⇒ B1

...
Ck y

0
k y

1
k . . . y

nk
k ⇒ Bk

U

def≡

def≡

case bT cU of⌊
C0 y

0
0 y

1
0 . . . yn0

0

⌋
U ⇒ bB0cU⌊

C1 y
0
1 y

1
1 . . . yn1

1

⌋
U ⇒ bB1cU

...⌊
Ck y

0
k y

1
k . . . y

nk
k

⌋
U ⇒ bBkcU

(16)

⌊
case x of
C y0 y1 . . . yn ⇒ B

⌋
U

def≡ bBcU
if
∀ni=0(yi not free in bBcU)

(17)

Figure 6. Pruning the intermediate representation

and applications of data constructors are pruned according to
Equation (15), which we elaborate in the following two sections.

4.6.2 Functions with global names
We prune the computation tree by replacing erased positions with a
placeholder � that will compile to a “null” value in the final stages
of compiling, as shown in Equation (14). We do not change function
arities; instead, we do not perform the pruned pieces of computation
and leave the corresponding references undefined in the low-level
representation.

6 2015/2/28

data Vect : N→ ?→ ? where
[] : Vect Z a

(::) : .{n : N} → (x : a)
→ (xs : Vect n a)
→ Vect (S n) a

(18)

index : .{n : N} → Fin n→ Vect n a→ a
index FZ (x :: xs) = x
index (FS n) (x :: xs) = index n xs

Figure 7. Syntax of erasure annotations in Idris

If an application is not saturated, it may need η-expansion or
other changes depending on the context to ensure that all arguments
end up in the correct positions.

4.6.3 Data constructors
Data constructor applications are simpler to handle than functions
because they have clearly defined arities, and other parts of the
compiler keep them exactly saturated in the internal representation.
Therefore, we completely remove their fields and change their arities,
instead of filling them with placeholders, as shown in Equation (15).

4.6.4 Case-expressions
Case-expressions are pruned as described in Equation (16). We re-
cursively prune the inspected term and all right-hand sides. However,
we must also prune the left-hand sides using the rule described in
Equation (15) because the data constructors’ runtime arities might
be different.

If we used the singleton-case optimisation from Section 4.3.5
specifically, Equation (9), we must also prune the singleton case-
trees according to Equation (17) to ensure that x is not deconstructed
at runtime as the corresponding low-level reference would be
undefined.

The resulting pruned program is now free from the runtime-
irrelevant data we have identified, and is ready to be compiled
further by the back-end to an executable.

4.7 Erasure annotations
We also allow user-provided erasure annotations. These serve two
purposes: requesting warnings if a certain part of the program is not
erased, and influencing case-tree elaboration.

In Idris, users can assert that certain arguments of functions
and data constructors will be found unused by the usage analysis
by putting dots in the corresponding places of type signatures. In
Figure 7, this is demonstrated on the type index n, in both the data
constructor (::) and the function index.

If this assertion fails because usage analysis finds that n could
be used, the compiler will emit a warning and will not erase n, still
producing a correct program.

It is important to note that erasure does not depend on erasure an-
notations, although they can improve it, and the erasure mechanism
will typically erase much more than the user has annotated.

The subsequent compilation stages perform an independent
usage analysis. If this marks something as erased, there is no reason
to leave it in the program even if the user did not annotate it.
Conversely, when analysis detects that the runtime code refers to a
value, it cannot be erased, even if marked as such.

Furthermore, Idris allows implicit quantification of unbound
variables. In Figure 7, the parameter a of the data constructor (::)
is an unbound implicit variable, while n is a bound implicit. For
unbound implicits, Idris will infer their types and quantify them
implicitly, but it will also consider them dotted, i.e. marked for

erasure. Indeed, we included the .{n : N} part purely for illustrative
purposes; we could have left n implicitly quantified, which would
also make it dotted, yielding the exact same result.

Since the core type theory has no notion of erasure annotations,
type signatures with erasure annotations are elaborated ignoring
those annotations completely. Erasure annotations are stored in a
separate structure.

4.7.1 Case-tree elaboration
When elaborating pattern-matching function definitions into case
trees, there may be several choices. Consider the following:

halve : (n : N)→ Even n→ N
halve Z EvenZ = Z
halve (S (S n)) (EvenSS e) = S (halve n e)

The run-time version of the program could case-split on either the
first or the second argument; both would work correctly but the two
options have different erasure properties, and thus different runtime
behaviour, possibly with even asymptotically different runtimes
and/or memory usage.

In these cases, the user can influence the case-tree elaborator by
putting an explicit erasure annotation in the type of the function
and the elaborator will try to avoid using the dotted arguments,
preferring other solutions, if available.

The Idris compiler uses a variant of the pattern compiling
algorithm described by Wadler [21]. Besides other modifications
and heuristics, the algorithm has been modified to reorder the list
of pattern variables so that no dotted variables (including those that
arise from matching on constructors) are matched before exhausting
non-dotted variables.

4.7.2 Erasure warnings
After usage analysis, the compiler checks whether everything that
has been dotted (marked with erasure annotations) is also recognised
as unused. If that is not the case, it reports all cases where an erasure
annotation is violated.

As already briefly mentioned, each implication gathered from
a program also carries a reason, which is a piece of data that
describes how the implication arose. After solving the resulting
logic program, each reachable node also carries a set of reasons
from the implications that contributed to its usage. We include this
information in warnings to make them usable in debugging.

Another thing to note is that erasure warnings are merely warn-
ings saying that the programmer’s idea differs from what has been
found about the source code. The subsequent compilation stages
use only the output of usage analysis (not the annotations) and the
resulting program will work correctly even with erasure violations.
However, it may be less efficient than the programmer expected.

5. Soundness
In this section, we provide a justification of the soundness of the
erasure algorithm. Note that soundness of erasure corresponds to
completeness of usage analysis (and vice versa) and for that reason
it is necessary to always specify which one we are talking about.
Also note that it is impossible to have an algorithm that is both
sound and complete, because usage of a variable may depend on the
outcome of a function, which is itself undecidable. Therefore we err
on the sound side.

5.1 Data flow graph
The algorithm as we present it in Section 4 is fairly efficient and
simple but reasoning about it turns out to be a difficult problem. The
reason is its non-locality: erasure at any single place depends on

7 2015/2/28

the behaviour of the whole program and thus it is not amenable to
inductive reasoning.

Therefore, it is useful to recognise that the algorithm is actually
a special case of a more general notion, which, besides making
reasoning feasible, will also help us to pinpoint data constructors as
the source of the non-locality.

In Section 4.2, we introduced the notion of nodes. We can
intuitively view nodes as vertices of a data flow graph and use
edges to model data dependencies between nodes.

Let us therefore define a (directed) data dependency graph
G for a program. The set of vertices V will contain nodes f?,
and f0, f1, . . . , fn−1 for every globally named function or data
constructor of arity n.

The arguments are represented by the nodes f0, . . . , fn−1 and
the return value is represented by f?. However, in order to define
the edges of the graph, we need to make it clear what it means for a
node to depend on another node. We also introduce the node C? for
every data constructor C, which we omitted in Section 4.

Aside: Dependently typed functions, such as printf, may be
variadic. We took the liberty of defining the arity as the number of
formal arguments in the text of the definition of a function, which
works well in practice.

Definition 1 (Node instances). An instance of the node ni is:

• if n is the name of a function — the variable standing for the
i-th formal argument of n within the body of n;

• if n is the name of a data constructor — any variable that arose
from pattern matching on the i-th field of n. Note that in IR(�),
there are no nested patterns, since these are represented as nested
case-expressions, and every constructor field corresponds to
exactly one variable.

• if ni = f? — any saturated application of f . The function or
data constructor of arity n is applied to at least n arguments.

In practice, not all applications of constructors and globally
named functions are saturated and η-expansion may be needed to
convert them to the desired form.

Definition 2 (Substitution of instances). If E is a term, E[ni := x]
represents a variant of E where all instances of ni have been
replaced with x. This definition also extends to whole programs.

Definition 3 (Terms in modified programs). As defined in Sec-
tion 4.3.1, Bf stands for the body of the function. To study be-
haviour of modified programs, we define BP

f to stand for the body
of the function f in the program P . Then we can have BP ′

f stand
for the body of f in a modified program P ′.

Definition 4 (Equivalence of terms). Let M ∼ N mean that the
terms M and N are not “observably distinguishable” in the calculus
we are working in.

We leave this notion abstract because depending on the reduction
behaviour of the calculus in question, this equivalence could take
on different forms, ranging from literal equality, through equality
of normal forms, to more complicated criteria. If it is too strict, too
little will be erased; if it is too lax, erasure might not be sound.

The general guideline is that∼ should be decidable andM ∼ N
should imply that M and N “behave the same.” This is the sense in
which we require the erased program to “behave the same” as the
original program.

Definition 5 (Usage patterns).

• Let P be a program expressed in IR.
• Let N be the set of nodes in the program P , as defined in

Section 4.2.
• A usage pattern is a set U ⊆ N .

• Let

bP cU
def≡ P [n1 . . . nk := �], {n1, . . . , nk} = N \ U

denote the program erased according to the usage pattern U .
• Usage pattern U is consistent if and only if erasure by U does

not affect the reduction behaviour of the body of the function
main:

BP
main ∼ B

bPcU
main

Observation: A superset of a consistent usage pattern is consistent.
This again, however, depends on the reduction behaviour of the
language in question. IR� of Idris allows passing undefined values
� in variables and function arguments freely, as long as they are not
inspected.

Definition 6. Let e′(T, n) denote that the term T depends on the
node n:

e′(T, n)
def≡ T [n := �] 6∼ T

Definition 7 (Edges of usage graph). Now we can define what
the edges of the usage graph are by defining the edge predicate e.
Intuitively, there is an edge e(m,n) if m ”depends on” n. More
precisely, the graph contains these edges:

• e(f?, fi) iff f is a function and e′(Bf , fi); i.e. the return value
of the function depends on its i-th argument.

• e(f?, g?) iff f is a function, g is either a function or a constructor,
and e′(Bf , g?); i.e. the return value of f depends on the return
value of g.

• e(f?, Ci) iff C is a data constructor and e′(Bf , Ci); i.e. the
return value of f is affected by a value read from the i-th field
of the constructor C.

• e(C?, Ci) iff p(main?, Ci); i.e. it matters what we save in the i-
th field of the constructor C because reading from it somewhere
affects main.

The last point refers to the predicate p, which we now define as the
path predicate:

p(m,n)
def≡ m = n ∨ ∃x. e(m,x) ∧ p(x, n)

The odd one out among the edges is the case for e(C?, Ci), which
says that an application of a constructor depends on its i-th argument
whenever the return value of main depends on data read from
that field anywhere in the program. This is precisely the non-local
dependency that data constructors introduce into the reasoning.

Definition 8 (Used nodes). Let us define what it means for a node
n to be used:

u(n)
def≡ p(main?, n)

Now we arrived at a precise (up to the notion of equivalence)
explanation of what it means for a node to be used and we have also
defined terminology and infrastructure to reason about usage. This
also shows that our algorithm is in fact a reachability search starting
from main?, searching for all nodes that represent values possibly
influencing the result of main.

5.2 Proof Sketch
We now express what it means for erasure to be sound and sketch
the proof steps.

Claim 1. Erasing the program P according to the result of our
usage analysis does not change the behaviour of main. More
precisely,

B
bPcU
main ∼ B

P
main (19)

8 2015/2/28

where the set U is the result of usage analysis, as described in
Section 4.5.

Step 1 (Completeness of data flow presentation). If we cannot
deduce that the term E depends on the node n, we can erase all
instances of n in E without affecting its behaviour:

6 ` p′(E,n) =⇒ EP [n:=�] ∼ E
Step 2 (Consistency of u). The usage pattern {n |u(n)} is consis-
tent.

Step 3. The implication gathering algorithm in Section 4.3 finds
all edges of the graph and combines them with the definition of the
path predicate to generate reachability implications.

The antecedent of every implication corresponds to a condition
of existence of edge from Definition 7.

(If the algorithm finds more implications than there are edges in
the graph, it is not a problem for soundness.)

Step 4. The set U calculated by forward chaining, as described in
Section 4.5, therefore contains {n |u(n)}.

Step 5. Hence, U is a consistent usage pattern andBbPcUmain ∼ B
P
main.

6. Results
The presented algorithm is implemented in the Idris compiler, and
by default runs on all programs. In this section, we show how it
performs in practice for the motivating examples presented earlier.

6.1 Benchmarks and measurements
We ran three different programs,with and without erasure, on
inputs of different size, 10 times per input, on a regular desktop
computer. These benchmarks, and others, can be found online at
https://github.com/ziman/idris-benchmarks/.

Figure 8(a) shows the runtime of the binary adder described
in Section 2.2. We can see that the unerased variant slows down
exponentially, while the runtime of the erased program grows only
linearly.

Figure 8(b) shows the runtime of a palindrome decider shown in
Section 2.1. The index xs in the constructor Two makes the whole
structure quadratically large. In fact, linear regression in the log-log
runtime graph shows that our implementation without erasure runs
in cubic time. Again, after erasure, the runtime returns to linear
growth, which is asymptotically optimal and almost not visible in
the plot.

Finally, Figure 8(c) shows that erasure can help even if it does
not improve asymptotic runtime of a program. This is why we chose
this program as a motivating example: in our benchmark, we simply
generate, compress and decompress a list, which in total takes linear
time, even if the “compressed” form is (asymptotically) wasteful
and actually not compressed. The program performs run-length
compression and decompression of a list of a given length. The
central data structure used is shown in Section 1 and is linear in size,
thanks to sharing between its indices. Therefore, erasure does not
yield asymptotic improvements, it simply eliminates unnecessary
index manipulation.

Figure 8(d) also shows that erased programs take less time to
compile. This may seem surprising at first, but there is typically a
lot of irrelevant code in programs with many invariants expressed in
types. While the erasure analysis takes time, there is significantly
less code to generate.

7. Related Work
Coq and Prop The Coq proof system has a whole universe of
types designated for erasure, named Prop. Coq generates executable
code via program extraction [18, 12, 13] and all values belonging

data Bin : .N→ ? where
N : Bin 0
I : ∀n→ Bin n→ Bin (1 + n+ n)
O : ∀n→ Bin n→ Bin (0 + n+ n)

(20)

fishy : Bin 0 — type says value represents 0
fishy = I 0 N — in fact, value represents 1

(21)

Figure 9. A type-correct Agda program using irrelevant indices.

to Prop are removed during the extraction. When defining a data
type, a programmer decides whether the data type should belong to
the universe of runtime-relevant values (Type) or to the universe of
erasable proofs (Prop).

Unfortunately, it is not possible to erase indices, which usually
have a non-Prop type, such as the list in our introductory example.
We could duplicate the type of lists in Prop (and the related
functions) but we still have to deal with cases like the following,

snocView : (xs : List a)→ SnocView xs

where xs cannot be in Prop because execution depends on it.
Leivent shows [11] that with sufficient care, we can avoid manual

duplication of the whole Type universe in Prop by defining a
suitable embedding into Prop in the spirit of Letouzey and Spitters’
nc monad [14] and this approach is practical enough to implement
interesting programs (such as red-black trees) that extract to very
clean ML code.

However, it is still not ideal for multiple reasons: it requires heavy
automation and it’s difficult to achieve good results even with Coq’s
automation facilities; it requires an extra axiom which contradicts
proof irrelevance [10]; it was discovered that this formulation of
erasability was inconsistent when not restricted to just Type0 [6],
and it is still unclear whether it is consistent with the restriction.

Agda and irrelevance In Agda, types are not inherently erased
or otherwise, but any type can be made irrelevant by putting a dot
in front of it [20]. Irrelevance has certain consequences but the
important one for us is that irrelevant arguments are erased.

However, as in the case of Coq; while this is a good approach to
erasing proofs, it is not suitable for erasing indices, as illustrated in
the type-correct program shown in Figure 9.

This is because, besides other things, two values of an irrelevant
type are considered equal. In other words, in Agda, irrelevant values
are conflated too early: already at the point of typechecking. What
we need instead is to have the typechecker treat the indices as entirely
ordinary and distinguishable values and erase only afterwards.

Forcing and collapsing Previously, Idris employed the forcing
and collapsing optimisation [4]. This optimisation can erase some
important classes of runtime-irrelevant data, such as termination/ac-
cessibility predicates [2] or those indices that are reconstructible
from the data being indexed. Since all data erased by this optimisa-
tion must not be manipulated by the generated code, it is subsumed
by our new approach, which recognises such cases from the gener-
ated code.

Erasure pure type systems In his dissertation [16], Mishra-Linger
defines a whole erasure framework, together with an extensive
metatheoretic analysis. His approach is to annotate every binder with
a binary flag denoting the runtime-relevance of the bound variable.
The dissertation also includes an annotation inference algorithm for
pure type systems, which is provably optimal in terms of the count
of annotations marked as runtime-irrelevant (and therefore erased).

Despite being formulated differently, this approach to inference
of annotations (collecting constraints in CNF and using unit propa-

9 2015/2/28

 0

 5

 10

 15

 20

 25

 30

 35

 0 20 40 60 80 100 120 140

R
u
n
ti

m
e
 (

s
e
c
o
n
d
s
)

Data size (word width, in bits)

004-bin-nat: runtime

unerased
erased-big

(a) Run time of the binary adder, O(cn) to O(n)

-5

 0

 5

 10

 15

 20

 25

 0 2000 4000 6000 8000 10000

R
u
n
ti

m
e
 (

s
e
c
o
n
d
s
)

Data size (input length, in characters)

003-palindrome: runtime

palin-unerased
palin-erased

(b) Run time of the palindrome checker, O(n3) to O(n)

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 100000 200000 300000

R
u
n
ti

m
e
 (

s
e
c
o
n
d
s
)

Data size (list length)

009-rle-l-len: runtime

rle-len-unerased
rle-len-erased

(c) A non-asymptotically improved program, RLE

1.2 1.4 1.6 1.8 2 2.2 2.4 2.6

rle

palin

bin

compiler runtime (seconds)

erased unerased

(d) Compilation times

Figure 8. Compilation time and runtime impact of erasure. Error bars show ±3× sample standard deviation.

gation to solve them) coincides with ours in the cases where only
the PTS subset of our calculus is used.

However, while it can erase from lambdas (unlike our approach
currently), it does not address case-expressions or pattern matching
on data constructors and the global constraints arising there. Instead,
Mishra-Linger discusses eliminators, which are equivalent to pattern-
matching [7] in theory. Our graph-theoretic presentation in Section 5
allows us to see a deeper structure behind the constraints, extend
the analysis and reason about it. A language inspired by EPTS from
this dissertation would, however, be a good target language for our
erasure analysis.

Dependent Haskell A similar approach is presented by Gundry
in his design of Dependent Haskell [8] and in a joint paper with
McBride [9]. Starting with a simple type theory, every type judge-
ment is annotated with some value from a preorder of phases and
typability of a term at some phase implies its typability at any higher
phase. The mechanism then provides an erasure procedure, which
erases parts of terms typed at phases from the chosen boundary
upwards.

Trellys The Trellys project [5] gave rise to several dependently
typed languages, which in general share the property of having a

restricted fragment used to express logic in an otherwise non-total
and permissive language. Again, type judgements are annotated with
relevance levels (L-ogic or P-rogrammatic) and these languages
could potentially be used as a target language for our usage analysis.

Type Theory in Colour Jean-Philippe Bernardy and Guilhem
Moulin present Type Theory in colour [1], namely a calculus called
CCCC. In CCCC, every type judgement is annotated with a set
of colours called taint and usage of tainted variables taints whole
expressions. There is an erasure procedure that removes those parts
of terms that are tainted by any selected colour. While CCCC could
also be used as a target language of erasure inference, it is more
general than that and erasure of dead data is only one of the aspects
which may be modelled by colour.

Multi-stage programming Multi-stage programming [19] presents
the phase distinction from a different perspective: some parts of the
code are executed at compile time, some at run time. Unsurprisingly,
the run-time portions can refer to the results of the compile-time
parts of code but not vice versa. After compiling, analogously to
erasure, the compile-time computation is not present in the resulting
run-time code.

10 2015/2/28

Laziness It might seem that lazy evaluation would relieve us from
evaluating arguments that are never inspected. In fact, laziness as
an erasure mechanism is effective only with highly compressible
structures, such as the first 1000 Fibonacci numbers, or when the
computation involved is expensive. Otherwise, we have to have the
relevant data stored somewhere, even if the routine that processes
it has not been run yet. It is not very helpful to store a big chain of
thunks instead of a big list. Therefore, since we can do better and
we can discover most of dead computation at compilation time, we
prefer simply to avoid including it in the resulting program at all.

8. Discussion
Our approach to erasure has several advantages, but also a number of
limitations at present. An important advantage is that introduction of
this form of erasure does not require any changes to the type theory
of the language in question. It can be regarded as an optimisation
that spots dead code/data in the intermediate representation of
programs and removes it, but does not affect typechecking at all. By
consequence, introduction of this optimisation does not change the
set of compilable/checkable programs, although it may issue new
compiler warnings.

No user-provided annotations in the source code are required and
most programs do not need any change. We did, however, change
some Idris programs according to the warnings coming from usage
analysis because they uncovered hidden inefficiencies.

Users can use annotations, for two purposes:

• to mark parts of programs as erased in order to get warnings in
case they are not, which would mean that the program does not
work as intended;

• to influence the case-tree elaborator to make a different choice if
there are more ways to build a case tree from a set of patterns,
as shown in Section 4.7.1.

Usage analysis is run after case-tree elaboration, which means
that the case-tree elaborator cannot use results of the analysis.
Instead, in Idris, the elaborator uses heuristics, unless user-provided
annotations override them.

Idris features the newtype optimisation, which means represent-
ing a single-constructor, single-field data type as just the field itself.
In Coq extraction, this is known as the (opposite of the) KeepSingle-
ton extraction option. For example, if a record contains just a single
Int field, the whole record will be represented as an Int at runtime.
Since erasure removes fields from data constructors, it often makes
them subject to the newtype optimisation. This combination of opti-
misations can be applied repeatedly and thus compile rich nested
structures down to just their barebones representation.

Usage analysis and its warnings can uncover hidden inefficien-
cies in the code, such as computing with indices instead of the actual
data, and thus it also encourages better structure of code. Erasure
also seems to work seamlessly with proof terms built with tactics.

Our erasure approach is easily adaptable to other languages,
although we would expect it to be less useful in non-dependently
typed languages as functions there generally do not have runtime-
irrelevant arguments.

8.1 Limitations
While our erasure algorithm works well in practice, there is a
number of limitations which we would like to address in future
where possible.

Currently, our scheme cannot erase from arguments of higher-
order functions because functional arguments do not have global
names that could be used to form nodes. In future work, we plan
to use nested nodes (i.e. where the node fij stands for the j-th
argument of the i-th argument of f) to address this issue. In the

meantime, we have developed a work-around for an important
special case: type classes (Section 4.4.2).

We also cannot erase from lambdas because, again, they do not
have a global name in IR(�). A solution might be a smarter analysis,
using the principles of lambda lifting.

Our approach requires whole-program analysis and compiling
code separately would be an interesting research problem. Possible
approaches include generating all consistent erasure-variants for
every function (although this would probably suffer from a combi-
natorial explosion due to the number of factors involved, especially
data constructors) or fully explicit annotations to fix the desired
erasure-variant.

Usage analysis requires that the program is well-typed, passes
all checks and contains the main function. This means that it is
currently impossible to analyse unfinished programs and libraries.
A way to enable analysis of libraries would be a suitable set of
compiler pragmas conveniently marking some functions as runtime-
relevant without being referenced from main if they are expected to
end up in generated code at all.

A limitation which may be more difficult to address is that totality
is critical for effective erasure. If a function has non-exhaustive
matching, the compiler must insert additional branching to report
coverage errors at runtime. Unfortunately, this branching must often
inspect arguments that were intended to be erased, thus preventing
them from being erased. If, on the other hand, a function is non-
terminating, and it is used as an (erased) absurd argument of a
function in a relevant context, our implementation may generate
a terminating but incorrect program, instead of a non-terminating
program. This is a known problem, which has been discussed in
at least Mishra-Linger’s dissertation [16], with a similar problem
discussed in Coq’s extraction literature [12].

Since neither termination nor falsity is decidable, it is not
possible to determine whether the argument being erased is safe to
remove without causing the above outcome. Therefore, we must
assume that no application of a non-total function can be removed
from the program and forbid erasure along the path in the data flow
graph all the way from the non-total application to main?.

Since usage patterns are inferred, the same function can have
different usage pattern in different programs (if the function is in
a library, it can be regarded as a limited form of erasure polymor-
phism). However, within a single program, the usage pattern for any
global name is fixed.

This presents problems with frequently used types such as
(dependent) pairs, which are often used in different ways in different
contexts: since one context uses just the first component and another
one uses just the second component of pairs, we cannot erase either.
Currently, this requires manually splitting the types. The dependent
pair type in Idris has been split into Sigma, Exists and Subset.
Instead, we would like the compiler to detect disjoint usages of
global names and generate differently erased variants of the same
entity.

8.2 Future work
In the near future, we would like to address the limitations discussed
in the previous section. For example, we can try to generalise the
type class work-around by using recursive nodes in order to erase
from arguments of higher-order functions.

Currently, erasure from functions happens by replacing the
erased pieces of computation with the undefined value �. There
is an ongoing effort to remove the unused arguments altogether,
exactly as we do now with data constructors.

The core language TT was initially designed to be an easily
checkable minimal language with dependent types. Now that we
have implemented an erasure analysis, we would like to extend this
language (and the currently untyped intermediate language IR(�))

11 2015/2/28

with an erasure type system. As well as helping to ensure correctness
of erasure, this would proved an independently checkable core
language incorporating erasure.

Erasure analysis is currently always a whole program analysis.
As programs get larger, this may become less practical. We would
therefore like to implement a suitable set of compiler pragmas that
would allow erasure-checking libraries without needing programs to
use them. We do not expect this to pose many difficulties, especially
since large parts of independent modules will be private or abstract.

Finally, although we generally advocate writing total functions
where possible, it would be very useful to support erasure in partial
functions.

8.3 Summary
We have shown that whole-program analysis is a useful way to
identify the runtime-irrelevant parts of code while being language-
agnostic and effective. We have also shown that usage analysis can
be understood in terms of data flow and data dependency graphs,
which is a formulation more amenable to reasoning and extensions.

We have shown that programming with views, and dependently
typed programming in general, does not have to be inefficient:
erasure can recover optimal asymptotic complexities of programs,
making it reasonable and practical, even in cases where the methods
currently in widespread use fall short. Our method for erasure has
been designed and implemented to deal with the kind of programs
which arise in practice when programming with dependent types,
and successfully erases the parts of programs which are intended as
static information only.

After all, the most efficient code is code that is never run.

Acknowledgements
We would like to thank Jonathan Leivent, who pointed out many
practical concerns in advance (such as usage analysis of separate
libraries) and for lots of stimulating and inspiring discussion. We
also thank Jan de Muijnck-Hughes for his comments on a draft of
this paper.

References
[1] J.-P. Bernardy and G. Moulin. Type-theory in color. In Proceedings

of the 18th ACM SIGPLAN International Conference on Functional
Programming, ICFP ’13, pages 61–72, New York, NY, USA, 2013.
ACM.

[2] A. Bove and V. Capretta. Modelling general recursion in type theory.
Mathematical Structures in Computer Science, 15(4):671–708, 2005.

[3] E. Brady. Idris, a general-purpose dependently typed programming
language: Design and implementation. Journal of Functional Pro-
gramming, 23:552–593, 9 2013.

[4] E. Brady, C. McBride, and J. McKinna. Inductive families need not
store their indices. In S. Berardi, M. Coppo, and F. Damiani, editors,
Types for Proofs and Programs, Torino, 2003, volume 3085 of LNCS,
pages 115–129. Springer-Verlag, 2004.

[5] C. Casinghino, V. Sjöberg, and S. Weirich. Combining proofs and
programs in a dependently typed language. In Proceedings of the 41st
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’14, pages 33–45, New York, NY, USA, 2014. ACM.

[6] R. Dockins. Re: Problem with tactic-generated terms. https://
sympa.inria.fr/sympa/arc/coq-club/2014-09/msg00114.
html, accessed on 2015-02-28., 2014.

[7] H. Goguen, C. Mcbride, and J. Mckinna. Eliminating dependent
pattern matching. In of Lecture Notes in Computer Science, pages
521–540. Springer, 2006.

[8] A. Gundry. Type Inference, Haskell and Dependent Types. PhD thesis,
University of Strathclyde, 2013.

[9] A. Gundry and C. McBride. Phase your erasure. 2013.

[10] J. Leivent. Erasable relevance. https://github.com/jonleivent/
mindless-coding/blob/fd2d662381aa7a805c73ac2bfeb1f1cadcfea47a/
erasable_relevance.v, accessed on 2015-02-28., 2014.

[11] J. Leivent. Mindless coding. https://github.com/jonleivent/
mindless-coding, accessed on 2015-02-28., 2014.

[12] P. Letouzey. A new extraction for Coq. In H. Geuvers and F. Wiedijk,
editors, Types for Proofs and Programs, volume 2646 of Lecture Notes
in Computer Science, pages 200–219. Springer Berlin Heidelberg,
2003.

[13] P. Letouzey. Coq extraction, an overview. In C. D. A. Beckmann and
B. Löve, editors, Logic and Theory of Algorithms, Fourth Conference
on Computability in Europe, CiE 2008, volume 5028 of Lecture Notes
in Computer Science. Springer-Verlag, 2008.

[14] P. Letouzey and B. Spitters. Implicit and noncomputational arguments
using monads, 2005.

[15] C. McBride and J. McKinna. The view from the left. Journal of
Functional Programming, 14(1):69–111, 2004.

[16] R. N. Mishra-Linger. Irrelevance, polymorphism, and erasure in type
theory, 2008.

[17] U. Norell. Towards a practical programming language based on
dependent type theory. PhD thesis, Chalmers University of Technology,
2007.

[18] C. Paulin-Mohring. Extracting f(omega)’s programs from proofs in
the calculus of constructions. In Conference Record of the Sixteenth
Annual ACM Symposium on Principles of Programming Languages,
Austin, Texas, USA, January 11-13, 1989, pages 89–104, 1989.

[19] W. Taha and T. Sheard. MetaML and multi-stage programming with
explicit annotations. In Theoretical Computer Science, pages 203–217.
ACM Press, 1999.

[20] The Agda authors. Agda Wiki: Irrelevance, 2014. Accessed on 25 Feb
2015.

[21] P. Wadler. Efficient compilation of pattern matching. In The Im-
plementation of Functional Programming Languages (Prentice-Hall
International Series in Computer Science). Prentice-Hall, Inc., Upper
Saddle River, NJ, USA, 1987.

12 2015/2/28

