
Epic — A Library for Generating Compilers

Edwin Brady

University of St Andrews, KY16 9SX, Scotland/UK,
eb@cs.st-andrews.ac.uk

Abstract. Compilers for functional languages, whether strict or non-
strict, typed or untyped, need to handle many of the same problems,
for example thunks, lambda lifting, optimisation, garbage collection, and
system interaction. Although implementation techniques are by now well
understood, it remains difficult for a new functional language to exploit
these techniques without either implementing a compiler from scratch,
or attempting to fit the new language around another existing compiler.
Epic is a compiled functional language which exposes functional compi-
lation techniques to a language implementor, with a Haskell API. In this
paper we describe Epic and outline how it may be used to implement a
high level language compiler, illustrating our approach by implementing
compilers for the λ-calculus and a dynamically typed graphics language.

1 Introduction

When implementing a new programming language, whether for research pur-
poses or as a realistic general purpose language, we are inevitably faced with the
problem of executing the language. Ideally, we would like execution to be as fast
as possible, and exploit known techniques from many years of compiler research.
However, it is difficult to make use of the existing available back ends for func-
tional langauges, such as the STG [12, 15, 19] or ABC [18] machines. They may
be too low level, they may make assumptions about the source language (e.g.,
its type system) or there may simply be no clearly defined API. As a result,
experimental languages such as Agda [14] have resorted to generating Haskell,
using unsafeCoerce to bypass the type system. Similarly, Cayenne [1] generated
LML bypassing the type checker. This is not ideal for several reasons: we cannot
expect to use the full power and optimisations of the underlying compiler, nor
can we expect it to exploit any specific features of our new source language, such
as the optimisation opportunities presented by rich dependent type systems [4].

Epic is a library which aims to provide the necessary features for implement-
ing the back-end of a functional language — thunks, closures, algebraic data
types, scope management, lambda lifting — without imposing any design choices
on the high level language designer, other than encouraging a functional style.
It provides compiler combinators, which guarantee that any output code will be
syntactically correct and well-scoped. This gives a simple method for building a
compiler for a new functional language, e.g., for experimentation with new type
systems or new domain specific languages. In this paper, we describe Epic and
its API using two example high level languages. More generally, we observe that:

1. Recent language and type system research has typically been based on ex-
tensions of existing languages, notably Haskell. While this makes implemen-
tation easier as it builds on an existing language, it discourages significant
departures from the existing language (e.g., full dependent types). With Epic,
we encourage more radical experiments by providing a standalone path to a
realistic, efficient, language implementation.

2. A tool can become significantly more useful if it is embeddable in other
systems. A language back end is no different — by providing an API for Epic,
we make it more widely applicable. Haskell’s expressiveness, particularly
through type classes, makes it simple to provide an appropriate API for
describing the core language.

3. Epic’s small core and clearly defined API makes it a potential platform for
experimentation with optimisations and new back ends. Indeed, we avoid
implementation details in this paper. Several implementations are possible,
perhaps targetting .NET or the JVM as well as native code.

Epic was originally written as a back end for Epigram [7] (the name1 is short for
“Epigram Compiler”). It is now used by Idris [5] and as an experimental back
end for Agda. It is specifically designed for reuse by other source languages.

2 The Epic Language

Epic is based on the λ-calculus with some extensions. It supports primitives
such as strings and integers, as well as tagged unions. There are additional
control structures for specifying evaluation order, primitive loop constructs, and
calling foreign functions. Foreign function calls are annotated with types, to
assist with marshaling values between Epic and C, but otherwise there are no
type annotations and there is no type checking — as Epic is intended as an
intermediate language, it is assumed that the high level language has already
performed any necessary type checking. The abstract syntax of the core language
is given in Figure 1. We use de Bruijn telescope notation, ~x , to denote a sequence
of x . Variable names are represented by x , and i , b, f , c, and str represent integer,
boolean, floating point, character and string literals respectively.

2.1 Definitions

An Epic program consists of a sequence of untyped function definitions, with
zero or more arguments. The entry point is the function main, which takes no
arguments. For example:

factorial(x) = if x == 0 then 1
else x × factorial(x − 1)

main() = putStrLn(intToString(factorial(10)))

1 Coined by James McKinna

p ::= ~def (Epic program) def ::= x (~x) = t (Definition)

t ::= x (Variable) | t(~t) (Application)
| λx . t (Lambda binding) | let x = t in t (Let binding)

| Con i(~t) (Constructor) | t !i (Projection)
| t op t (Infix operator) | if t then t else t (Conditional)

| case t of ~alt (Case expressions) | lazy(t) (Lazy evaluation)

| effect(t) (Effectful term) | while t t (While loops)

| x := t in t (Variable update) | foreign T str ~(t : T) (Foreign call)

| malloc t t (Allocation) | i | f | c | b | str (Constants)

alt ::= Con i(~x) 7→ t (Constructors) | i 7→ t (Constants)
| default 7→ t (Match anything)

op ::= + | − | × | / |== |< | ≤ |> | ≥ |<< |>>

T ::= Int | Char | Bool | Float | String (Primitives)
| Unit (Unit type)
| Ptr (Foreign pointers)
| Any (Polymorphic type)

Fig. 1. Epic syntax

The right hand side of a definition is an expression consisting of function applica-
tions, operators (arithmetic, comparison, and bit-shifting), bindings and control
structures (some low level and imperative). Functions may be partially applied.

Values Values in an Epic program are either one of the primitives (an integer,
floating point number, character, boolean or string) or a tagged union. Tagged
unions are of the form Coni(t1, . . . , tn), where i is the tag and the~t are the fields.
The name Con is to suggest “Constructor”. For example, we could represent a list
using tagged unions, with Con 0 () representing the empty list and Con 1 (x , xs)
representing a cons cell, where x is the element and xs is the tail of the list.

Tagged unions are inspected either using field projection (t !i projects the ith
field from a tagged union t) or by case analysis. E.g., to append two lists:

append(xs, ys) = case xs of
Con 0() 7→ ys
Con 1(x , xs ′) 7→ Con 1(x , append(xs ′, ys))

Evaluation strategy By default, expressions are evaluated eagerly (in ap-
plicative order), i.e. arguments to functions and tagged unions are evaluated
immediately, left to right. Evaluation can instead be delayed using the lazy con-
struct. An expression lazy(t) builds a thunk for the expression t which will not

be evaluated until it is required by one of: inspection in a case expression or
the condition in an if statement; field projection; being passed to a foreign func-
tion; explicit evaluation with effect.An expression effect(t) evaluates the thunk
t without updating the thunk with the result. This is to facilitate evaluation of
side-effecting expressions.

Higher order functions Finally, expressions may contain λ and let bindings.
Higher order functions such as map are also permitted:

map(f , xs) = case xs of
Con 0() 7→ Con 0()
Con 1(x , xs ′) 7→ Con 1(f (x),map(f , xs ′))

evens(n) = let nums = take(n, countFrom(1)) in
map(λx . x × 2,nums)

2.2 Foreign Functions

Most programs eventually need to interact with the operating system. Epic pro-
vides a lightweight foreign function interface which allows interaction with exter-
nal C code. Since Epic does no type checking or inference, a foreign call requires
the argument and return types to be given explicitly. e.g. the C function:

double sin(double x);

We can call this function from Epic by giving the C name, the return type (an
Epic Float, which corresponds to a C double) and the argument type (also an
Epic Float).

sin(x) = foreign Float ”sin” (x : Float)

2.3 Low Level Features

Epic emphasises control over safety, and therefore provides some low level fea-
tures. A high level language may wish to use these features in some performance
critical contexts, whether for sequencing side effects, implementing optimisa-
tions, or to provide run-time support code. Epic allows sequencing, while loops
and variable update, and provides a malloc construct for memory allocation.
The behaviour of mallocn t is to create a fixed pool of n bytes, and allocate only
from this pool when evaluating t . Due to space restrictions we will not discuss
these constructs further.

2.4 Haskell API

The primary interface to Epic is through a Haskell API which is used to build
expressions and programs with higher order abstract syntax (HOAS) [17]. Imple-
menting a compiler for a high level language then involves converting the abstract
syntax of a high level program into an Epic program, through these “compiler
combinators”, and implementing any run-time support as Epic functions.

Programs and expressions The API allows the building of Epic programs
with an Embedded Domain Specific Language (EDSL) style interface, i.e. we
try to exploit Haskell’s syntax as far as possible. There are several possible
representations of Epic expressions. Expr is the internal abstract representation,
and Term is a representation which carries a name supply. We have a type class
EpicExpr which provides a function term for building a concrete expression
using a name supply:

type Term = State NextName Expr

class EpicExpr e where

term :: e -> Term

There are straightforward instances of EpicExpr for the internal representations
Expr and Term. There is also an instance for String, which parses concrete
syntax, which is beyond the scope of this paper. More interestingly, we can
build an instance of the type class which allows Haskell functions to be used to
build Epic functions. This means we can use Haskell names for Epic references,
and not need to worry about scoping or ambiguous name choices.

instance EpicExpr e => EpicExpr (Expr -> e) where

Alternatively, function arguments can be given explicit names, constructed with
name. A reference to a name is built with ref, and fn composes ref and name.

name :: String -> Name

ref :: Name -> Term

fn :: String -> Term

We provide an instance of EpicExpr to allow a user to give names explicitly.
This may be desirable when the abstract syntax for the high level language we
are compiling has explicit names.

instance EpicExpr e => EpicExpr ([Name], e) where

For example, the identity function can be built in either of the following ways:

id1, id2 :: Term

id1 = term (\ x -> x)

id2 = term ([name "x"], fn "x")

Both forms, using Haskell functions or explicit names, can be mixed freely in an
expression. A program is a collection of named Epic expressions built using the
EpicExpr class:

type Program = [EpicDecl]

data EpicDecl = forall e. EpicExpr e => EpicFn Name e

The library provides a number of built-in definitions for some common operations
such as outputting strings and converting data types:

basic_defs :: [EpicDecl]

In this paper we use putStr and putStrLn for outputting strings, append for
concatenating strings, and intToString for integer to string conversion. We can
compile a collection of definitions to an executable, or simply execute them
directly. Execution begins with the function called "main" — Epic reports an
error if this function is not defined:

compile :: Program -> FilePath -> IO ()

run :: Program -> IO ()

Building expressions We have seen how to build λ bindings with the EpicExpr
class, using either Haskell’s λ or pairing explicitly bound names with their scope.
We now add further sub-expressions. The general form of functions which build
expressions is to create a Term, i.e. an expression which manages its own name
supply by combining arbitrary Epic expressions, i.e. instances of EpicExpr. For
example, to apply a function to an argument, we provide an EpicExpr for the
function and the argument:

infixl 5 @@

(@@) :: (EpicExpr f, EpicExpr a) => f -> a -> Term

Since Term itself is an instance of EpicExpr, we can apply a function to several
arguments through nested applications of @@, which associates to the left as
with normal Haskell function application. We have several arithmetic operators,
including arithmetic, comparison and bitwise operators, e.g.:

op_ :: (EpicExpr a, EpicExpr b) => Op -> a -> b -> Term

plus_, minus_, times_, divide_ :: Op

We follow the convention that Epic keywords and primitive operators are rep-
resented by a Haskell function with an underscore suffix. This convention arises
because we cannot use Haskell keywords such as if, let and case as function
names. For consistency, we have extended the convention to all functions and
operators. if...then...else expressions are built using the if function:

if_ :: (EpicExpr a, EpicExpr t, EpicExpr e) => a -> t -> e -> Term

For let bindings, we can either use HOAS or bind an explicit name. To achieve
this we implement a type class and instances which support both:

class LetExpr e where

let_ :: EpicExpr val => val -> e -> Term

instance EpicExpr sc => LetExpr (Name, sc)

instance LetExpr (Expr -> Term)

To build a constructor form, we apply a constructor with an integer tag to
its arguments. We build a constructor using the con function, and provide a
shorthand tuple for the common case where the tag can be ignored — as the
name suggests, this happens when building tuples and records:

con_ :: Int -> Term

tuple_ :: Term

Case analysis To inspect constructor forms, or to deconstruct tuples, we use
case expressions. A case expression chooses one of the alternative executions
path depending on the value of the scrutinee, which can be any Epic expression:

case_ :: EpicExpr e => e -> [Case] -> Term

We leave the definition of Case abstract (although it is simply an Epic expression
carrying a name supply) and provide an interface for building case branches.
The scrutinee is matched against each branch, in order. To match against a
constructor form, we use the same trick as we did for λ-bindings, either allowing
Haskell to manage the scope of constructor arguments, or giving names explicitly
to arguments, or a mixture. For convenience, we make Expr and Term instances
to allow empty argument lists.

class Alternative e where

mkAlt :: Tag -> e -> Case

instance Alternative Expr

instance Alternative Term

instance Alternative e => Alternative (Expr -> e)

instance Alternative e => Alternative ([Name], e)

We can build case alternatives for constructor forms (matching a specific tag),
tuples, or integer constants (matching a specific constant), and a default case if
all other alternatives fail to match. In the following, e is an expression which
gives the argument bindings, if any, and the right hand side of the match.

con :: Alternative e => Int -> e -> Case

tuple :: Alternative e => e -> Case

constcase :: EpicExpr e => Int -> e -> Case

defaultcase :: EpicExpr e => e -> Case

3 Example — Compiling the λ-Calculus

In this section we present a compiler for the untyped λ-calculus using HOAS,
showing the fundamental features of Epic required to build a complete compiler.

3.1 Representation

Our example is an implementation of the untyped λ-calculus, plus primitive
integers and strings, and arithmetic and string operators. The Haskell repre-
sentation uses higher order abstract syntax (HOAS). We also include global
references (Ref) which refer to top level functions, function application (App),
constants (Const) and binary operators (Op):

data Lang = Lam (Lang -> Lang)

| Ref Name

| App Lang Lang

| Const Const

| Op Infix Lang Lang

Constants can be either integers or strings:

data Const = CInt Int | CStr String

There are infix operators for arithmetic (Plus, Minus, Times and Divide), string
manipulation (Append) and comparison (Eq, Lt and Gt). The comparison oper-
ators return an integer — zero if the comparison is true, non-zero otherwise:

data Infix = Plus | Minus | Times | Divide | Append | Eq | Lt | Gt

A complete program consists of a collection of named Lang definitions:

type Defs = [(Name, Lang)]

3.2 Compilation

Our aim is to convert a collection of Defs into an executable, using the compile

or run function from the Epic API. Given an Epic Program, compile will gener-
ate an executable, and run will generate an executable then run it. Recall that
a program is a collection of named Epic declarations:

data EpicDecl = forall e. EpicExpr e => EpicFn Name e

type Program = [EpicDecl]

Our goal is to convert a Lang definition into something which is an instance
of EpicExpr. We use Term, which is an Epic expression which carries a name
supply. Most of the term construction functions in the Epic API return a Term.

build :: Lang -> Term

The full implementation of build is given in Figure 2. In general, this is a
straightforward traversal of the Lang program, converting Lang constants to
Epic constants, Lang application to Epic application, and Lang operators to the
appropriate built-in Epic operators.

build :: Lang -> Term

build (Lam f) = term (\x -> build (f (EpicRef x)))

build (EpicRef x) = term x

build (Ref n) = ref n

build (App f a) = build f @@ build a

build (Const (CInt x)) = int x

build (Const (CStr x)) = str x

build (Op Append l r) = fn "append" @@ build l @@ build r

build (Op op l r) = op_ (eOp op) (build l) (build r)

where eOp Plus = plus_

eOp Minus = minus_

...

Fig. 2. Compiling Untyped λ-calculus

Using HOAS has the advantage that Haskell can manage scoping, but the
disadvantage that it is not straightforward to convert the abstract syntax into
another form. The Epic API also allows scope management using HOAS, so we
need to convert a function where the bound name refers to a Lang value into a
function where the bound name refers to an Epic value. The easiest solution is
to extend the Lang datatype with an Epic reference:

data Lang = ...

| EpicRef Expr

build (Lam f) = term (\x -> build (f (EpicRef x)))

To convert a Lang function to an Epic function, we build an Epic function in
which we apply the Lang function to the Epic reference for its argument. Every
reference to a name in Lang is converted to the equivalent reference to the name
in Epic. Although it seems undesirable to extend Lang in this way, this solution
is simple to implement and preserves the desirable feature that Haskell manages
scope. Compiling string append uses a built in function provided by the Epic
interface in basic defs:

build (Op Append l r) = fn "append" @@ build l @@ build r

Given build, we can translate a collection of HOAS definitions into an Epic
program, add the built-in Epic definitions and execute it directly. Recall that
there must be a main function or Epic will report an error — we therefore add
a main function which prints the value of an integer expression given at compile
time.

main_ exp = App (Ref (name "putStrLn"))

(App (Ref (name "intToString")) exp)

mkProgram :: Defs -> Lang -> Program

mkProgram ds exp = basic_defs ++

map (\ (n, d) -> EpicFn n (build d)) ds ++

[(name "main", main_ exp)]

execute :: Defs -> Lang -> IO ()

execute p exp = run (mkProgram p exp)

Alternatively, we can generate an executable. Again, the entry point is the Epic
function main:

comp :: Defs -> Lang -> IO ()

comp p exp = compile "a.out" (mkProgram p exp)

This is a compiler for a very simple language, but a compiler for any more
complex language follows the same pattern: convert the abstract syntax for each
named definition into a named Epic Term, add any required primitives (we have
just used basic defs here), and pass the collection of definitions to run or
compile.

4 Atuin — A Dynamically Typed Graphics Language

In this section we present a more detailed example language, Atuin2, and outline
how to use Epic to implement a compiler for it. Atuin is a simple imperative
language with higher order procedures and dynamic type checking, with primi-
tive operations implementing turtle graphics. The following example illustrates
the basic features of the language. The procedure repeat executes a code block
a given number of times:

repeat(num, block) {

if num > 0 {

eval block

repeat(num-1, block)

}

}

Using repeat, polygon draws a polygon with the given number of sides, a size
and a colour:

polygon(sides, size, col) {

if sides > 2 {

colour col

angle = 360/sides

repeat(sides, {

forward size

right angle

})

}

}

Programs consist of a number of procedure definitions, one of which must be
called main and take no arguments:

main() {

polygon(10,25,red)

}

4.1 Abstract Syntax

The abstract syntax of Atuin is defined by algebraic data types constructed by a
Happy-generated parser. Constants can be one of four types: integers, characters,
booleans and colours:

data Const = MkInt Int | MkChar Char

| MkBool Bool | MkCol Colour

data Colour = Black | Red | Green | Blue | ...

Atuin is an imperative language, consisting of sequences of commands applied
to expressions. We define expressions (Exp) and procedures (Turtle) mutually.

2 http://hackage.haskell.org/package/atuin

Expressions can be constants or variables, and combined by infix operators.
Expressions can include code blocks to pass to higher order procedures.

data Exp = Infix Op Exp Exp | Var Id

| Const Const | Block Turtle

data Op = Plus | Minus | Times | Divide | ...

Procedures define sequences of potentially side-effecting turtle operations. There
can be procedure calls, turtle commands, and some simple control structures.
Pass defines an empty code block:

data Turtle = Call Id [Exp] | Turtle Command

| Seq Turtle Turtle | If Exp Turtle Turtle

| Let Id Exp Turtle | Eval Exp

| Pass

The turtle can be moved forward, turned left or right, or given a different pen
colour. The pen can also be raised, to allow the turtle to move without drawing.

data Command = Fd Exp | RightT Exp | LeftT Exp

| Colour Exp | PenUp | PenDown

As with the λ-calculus compiler in Section 3, a complete program consists of
a collection of definitions, where definitions include a list of formal parameters
and the program definition:

type Proc = ([Id], Turtle)

type Defs = [(Id, Proc)]

4.2 Compiling

While Atuin is a different kind of language from the λ-calculus, with complicating
factors such as a global state (the turtle), imperative features, and dynamic
type checking, the process of constructing a compiler follows the same general
recipe, i.e. define primitive operations as Epic functions, then convert each Atuin
definition into the corresponding Epic definition.

Compiling Primitives The first step is to define primitive operations as Epic
functions. The language is dynamically typed, therefore we will need primitive
operations to check dynamically that they are operating on values of the correct
type. We define functions which construct Epic code for building values, effec-
tively using a single algebraic datatype to capture all possible run-time values
(i.e. values are “uni-typed” [20]).

mkint i = con_ 0 @@ i

mkchar c = con_ 1 @@ c

mkbool b = con_ 2 @@ b

mkcol c = con_ 3 @@ c

Correspondingly, we can extract the concrete values safely from this structure,
checking that the value is the required type, e.g.

getInt x = case_ x [con 0 (\ (x :: Expr) -> x),

defaultcase (error_ "Not an Int")]

Similarly, getChar, getBool and getCol check and extract values of the appro-
priate type. Using these, it is simple to define primitive arithmetic operations
which check that they are operating on the correct type, and report an error if
not.

primPlus x y = mkint $ op_ plus_ (getInt x) (getInt y)

primMinus x y = mkint $ op_ minus_ (getInt x) (getInt y)

primTimes x y = mkint $ op_ times_ (getInt x) (getInt y)

primDivide x y = mkint $ op_ divide_ (getInt x) (getInt y)

Graphics Operations We use the Simple DirectMedia Layer3 (SDL) to im-
plement graphics operations. We implement C functions to interact with SDL,
and use Epic’s foreign function interface to call these functions. For example:

void* startSDL(int x, int y);

void drawLine(void* surf, int x, int y, int ex, int ey,

int r, int g, int b, int a);

The startSDL function opens a window with the given dimensions, and returns
a pointer to a surface on which we can draw; drawLine draws a line on a surface,
between the given locations, and in the given colour, specified as red, green, blue
and alpha channels.

We represent colours as a 4-tuple (r , g , b, a). Drawing a line in Epic involves
extracting the red, green, blue and alpha components from this tuple, then calling
the C drawLine function. To make a foreign function call, we use foreign ,
giving the C function name and explicit types for each argument so that Epic
will know how to convert from internal values to C values:

drawLine :: Expr -> Expr -> Expr -> Expr -> Expr -> Expr -> Term

drawLine surf x y ex ey col

= case_ (rgba col)

[tuple (\ r g b a ->

foreign_ tyUnit "drawLine"

[(surf, tyPtr),

(x, tyInt), (y, tyInt), (ex, tyInt), (ey, tyInt),

(r, tyInt), (g, tyInt), (b, tyInt), (a, tyInt)])]

The turtle state is a tuple (s, x , y , d , c, p) where s is a pointer to the SDL surface,
(x , y) gives the turtle’s location, d gives its direction, c gives the colour and
p gives the pen state (a boolean, false for up and true for down). Note that
this state is not accessible by Atuin programs, so we do not dynamically check
each component. To implement the forward operation, for example, we take
the current state, update the position according to the distance given and the
current direction, and if the pen is down, draws a line from the old position to
the new position.

3 http://libsdl.org/

forward :: Expr -> Expr -> Term

forward st dist = case_ st

[tuple (\ (surf :: Expr) (x :: Expr) (y :: Expr)

(dir :: Expr) (col :: Expr) (pen :: Expr) ->

let_ (op_ plus_ x (op_ times_ (getInt dist) (esin dir)))

(\x’ -> let_ (op_ plus_ y (op_ timesF_ (getInt dist) (ecos dir)))

(\y’ -> if_ pen (fn "drawLine" @@ surf @@ x @@ y

@@ x’ @@ y’ @@ col) unit_ +>

tuple_ @@ surf @@ x’ @@ y’ @@ dir @@ col @@ pen)))]

Here we have applied getInt, esin and ecos as Haskell functions, so they will
be inlined in the resulting Epic code. In contrast, drawLine is applied as a
separately defined Epic function, using Epic’s application operator (@@).

Compiling Programs Programs return an updated turtle state, and possi-
bly perform side-effects such as drawing. An Atuin definition with arguments
a1 . . . an is translated to an Epic function with a type of the following form:

f : State → a1 → . . .→ an → State

To compile a complete program, we add the primitive functions we have defined
above (line drawing, turtle movement, etc) to the list of basic Epic definitions,
and convert the user defined procedures to Epic.

prims = basic_defs ++ [EpicFn (name "initSDL") initSDL,

EpicFn (name "drawLine") drawLine,

EpicFn (name "forward") forward, ...]

We define a type class to capture conversion of expressions, commands and full
programs into Epic terms. Programs maintain the turtle’s state (an Epic Expr),
and return a new state, so we pass this state to the compiler.

class Compile a where

compile :: Expr -> a -> Term

In general, since we have set up all of the primitive operations as Epic functions,
compiling an Atuin program consists of directly translating the abstract syntax
to the Epic equivalent, making sure the state is maintained. For example, to
compile a call we build an Epic function call and add the current state as the
first argument. Epic takes strings as identifiers, so we use fullId :: Id ->

String to convert an Atuin identifier to an Epic identifier.

compile state (Call i es) = app (fn (fullId i) @@ state) es

where app f [] = f

app f (e:es) = app (f @@ compile state e) es

Where operations are sequenced, we make sure that the state returned by the
first operation is passed to the next:

compile state (Seq x y)

= let_ (compile state x) (\state’ -> compile state’ y)

Atuin has higher order procedures which accept code blocks as arguments.
To compile a code block, we build a function which takes the turtle state (that
is, the state at the time the block is executed, not the state at the time the block
is created). Epic’s effect function ensures that a closure is evaluated, but the
result is not updated. Evaluating the closure may have side effects which may
need to be executed again — consider the repeat function above, for example,
where the code block should be evaluated on each iteration.

compile state (Block t) = term (\st -> compile st t)

compile state (Eval e) = effect_ (compile state e @@ state)

The rest of the operations are compiled by a direct mapping to the primitives
defined earlier. Finally, the main program sets up an SDL surface, creates an
initial turtle state, and passes that state to the user-defined main function:

init_turtle surf = tuple_ @@ surf @@ int 320 @@ int 240 @@

int 180 @@ col_white @@ bool True

runMain :: Term

runMain = let_ (fn "initSDL" @@ int 640 @@ int 480)

(\surface ->

(fn (fullId (mkId "main")) @@ (init_turtle surface)) +>

flipBuffers surface +> pressAnyKey)

The full source code for Atuin and its compiler is available from Hackage (http:
//hackage.haskell.org/package/atuin), which covers the remaining techni-
cal details of linking compiled programs with SDL.

5 Related Work

Epic is currently used by Agda and Idris [5], as well as the development version
of Epigram [7]. Initial benchmarking [6] shows that the code generated by Epic
can be competitive with Java and is not significantly worse than C. Epic uses
techniques from other functional language back ends [12, 15, 18] but deliberately
exposes its core language as an API to make it as reusable as possible. Although
there is always likely to be a trade off between reusability and efficiency, exposing
the API will make it easier for other language researchers to build a new compiler
quickly. As far as we are aware, Epic occupies a unique point in the design space
of code generation tools — it is sufficiently high level that it captures common
functional language abstractions without being so high level that it imposes
constraints such as a type system on the language it is compiling. Alonzo, for
example, is a prototype compiler for Agda [2] which compiles via GHC, but
requires coercions in the generated code in order for it to be accepted by GHC’s
type checker. Coq’s program extraction tool [10] also aims to generate executable
code via a high level language, similarly requiring coercions. In contrast, systems
such as the Lazy Virtual Machine [9], C-- [16] and LLVM [8] are designed as
lower level target languages rather than high level APIs. We could nevertheless
consider using these tools for Epic code generation.

6 Conclusion

Epic provides a simple path for language researchers to convert experimental
languages (e.g. experimenting with new type systems or domain specific language
design) into larger scale, usable tools, by providing an API for generating a
compiler, dealing with well-understood but difficult to implement problems such
as naming and scope management, code generation, interfacing with foreign
functions and garbage collection. In this paper we have seen two examples of
languages which can be compiled via Epic, both functionally based, but with
different features. The high-level recipe for each is the same: define primitive
functions as run-time support, then translate the abstract syntax into concrete
Epic functions, using a combinator style API. In addition, we have implemented
a compiler for λΠ [11], a dependently typed language, which shows how Epic
can handle languages with more expressive type systems4.

Future work Since Epic is currently used in practice by a number of depen-
dently typed functional languages, future work will have an emphasis on pro-
viding an efficient executable environment for these and related languages. An
interesting research question, for example, is whether the rich type systems of
these languages can be used to guide optimisation, and if so how to present the
information gained by the type system to the compiler.

Currently, Epic compiles to machine code via C, using the Boehm conserva-
tive garbage collector [3]. While this has been reasonably efficient in practice,
we believe that an LLVM based implementation [8, 19] with accurate garbage
collection would be more appropriate as it could take advantage of functional
language features such as immutability of data.

Perhaps more importantly, as a very simple functional language Epic is a
convenient platform with which to experiment with functional compilation tech-
niques. For example, we are developing an evaluator which will be a starting
point for experimenting with supercompilation [13] and partial evaluation. Of
course, any language which uses Epic as a back end will stand to gain from
future optimisation efforts!

Acknowledgments

This work was partly funded by the Scottish Informatics and Computer Science
Alliance (SICSA) and by EU Framework 7 Project No. 248828 (ADVANCE).
Thanks to the anonymous reviewers for their constructive suggestions.

References

1. L. Augustsson. Cayenne - a language with dependent types. In Proc. 1998 Inter-
national Conf. on Functional Programming (ICFP ’98), pages 239–250, 1998.

4 http://www.idris-lang.org/examples/LambdaPi.hs

2. M. Benke. Alonzo — a compiler for Agda, 2007. Talk at Agda Implementors
Meeting 6.

3. H.-J. Boehm, A. J. Demers, Xerox Corporation Silicon Graphic, and Hewlett-
Packard Company. A garbage collector for C and C++, 2001.

4. E. Brady. Practical Implementation of a Dependently Typed Functional Program-
ming Language. PhD thesis, University of Durham, 2005.

5. E. Brady. Idris — Systems programming meets full dependent types. In PLPV,
pages 43–54, 2011.

6. E. Brady and K. Hammond. Scrapping your inefficient engine: using partial eval-
uation to improve domain-specific language implementation. In ICFP ’10: Pro-
ceedings of the 15th ACM SIGPLAN International Conference on Functional Pro-
gramming, pages 297–308, New York, NY, USA, 2010. ACM.

7. J. Chapman, P.-E. Dagand, C. McBride, and P. Morris. The gentle art of levitation.
In ICFP ’10: Proceedings of the 15th ACM SIGPLAN International Conference on
Functional Programming, pages 3–14, New York, NY, USA, 2010. ACM.

8. C. Lattner. LLVM: An infrastructure for multi-stage optimization. Master’s thesis,
Computer Science Dept., University of Illinois at Urbana-Champaign, December
2002.

9. D. Leijen. LVM, the Lazy Virtual Machine. Technical Report UU-CS-2004-05,
Institute of Information and Computing Sciences, Utrecht University, August 2005.

10. P. Letouzey. A new extraction for Coq. In H. Geuvers and F. Wiedijk, editors,
Types for proofs and programs, LNCS. Springer, 2002.

11. A. Löh, C. McBride, and W. Swierstra. A tutorial implementation of a dependently
typed lambda calculus. Fundam. Inform., 102(2):177–207, 2010.

12. S. Marlow and S. Peyton Jones. How to make a fast curry: push/enter vs
eval/apply. In International Conference on Functional Programming, Snowbird,
pages 4–15, 2004.

13. N. Mitchell. Rethinking supercompilation. In Proceedings of the 15th ACM SIG-
PLAN international conference on Functional programming, ICFP ’10, pages 309–
320, New York, NY, USA, 2010. ACM.

14. U. Norell. Towards a practical programming language based on dependent type
theory. PhD thesis, Chalmers University of Technology, September 2007.

15. S. Peyton Jones. Implementing lazy functional languages on stock hardware – the
Spineless Tagless G-machine. Journal of Functional Programming, 2(2):127–202,
April 1992.

16. S. Peyton Jones, T. Nordin, and D. Oliva. C–: A portable assembly language. In
C. Clack, editor, Workshop on Implementing Functional Languages, St Andrews.
Springer-Verlag, 1997.

17. F. Pfenning and C. Elliot. Higher-order abstract syntax. In Proceedings of the ACM
SIGPLAN 1988 conference on Programming Language design and Implementation,
PLDI ’88, pages 199–208, New York, NY, USA, 1988. ACM.

18. S. Smetsers, E. Nöcker, J. van Groningen, and R. Plasmeijer. Generating efficient
code for lazy functional languages. In J. Hughes, editor, Functional program-
ming Languages and Computer Architecture, volume 523 of LNCS, pages 592–617.
Springer-Verlag, 1991.

19. D. A. Terei and M. M. Chakravarty. An LLVM backend for GHC. In Proceedings
of the Third ACM Haskell Symposium, Haskell ’10, pages 109–120, New York, NY,
USA, 2010. ACM.

20. P. Wadler and R. B. Findler. Well-typed programs can’t be blamed. In European
Symposium on Programm (ESOP 2009), pages 1–16, 2009.

