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Abstract There has been significant interest in recent months in finding
new ways to implement composable and modular effectful programs using
handlers of algebraic effects. In my own previous work, I have shown how
an algebraic effect system (called effects) can be embedded directly in
a dependently typed host language. Using dependent types ought to allow
precise reasoning about programs; however, the reasoning capabilities of
effects have been limited to simple state transitions which are known
at compile-time. In this paper, I show how effects can be extended to
support reasoning in the presence of run-time state transitions, where
the result may depend on run-time information about resource usage (e.g.
whether opening a file succeeded). I show how this can be used to build
expressive APIs, and to specify and verify the behaviour of interactive,
stateful programs. I illustrate the technique using a file handling API,
and an interactive game.

1 Introduction

Pure functional languages with dependent types such as Idris [3] support reas-
oning about programs directly in the type system, promising that we can know a
program will run correctly (i.e. according to the specification in its type) simply
because it compiles. However, things are not always so simple: programs have to
interact with the outside world, with user input, input from a network or mutable
state. Such operations are outside the control of a language, and may fail.

In previous work [4], I showed how Idris could be used to manage stateful and
side-effecting programs in an Embedded Domain Specific Language (EDSL) called
effects, built around an implementation of algebraic effects and handlers [2,14].
Informally, an algebraic effect is an algebraic datatype describing a collection of
permitted operations. For example, the STDIO effect for Console I/O supports
the operations getStr and putStr and the EXCEPTION effect supports the
operation raise. The effects EDSL allows us to compose effects in one
program, e.g.

readName : List String ->
{ [STDIO, EXCEPTION String] } Eff IO ()

readName known
= do putStr "Name: "

x <- getStr
if (trim x ‘elem‘ known)



then putStr $ "Hello " ++ x ++ "\n"
else raise "Name not recognised"

This program reads a name from the console, and prints a different message
depending on whether the user’s name is recognised or not. The effects STDIO
and EXCEPTION String are given in the type to express that the program
supports Console I/O and exceptions which carry strings, respectively. Effectful
programs are executed with the run function, e.g.:

main : IO ()
main = run (readName ["Alice","Bob"])

Being implemented in a dependently typed language, effects supports
reasoning about state transitions. The previous implementation was, however,
seriously limited in that only known compile-time transitions could be expressed.
Opening a file, for example, was assumed to always succeed with any failure
being dealt with in an exception handler. Realistically, any interaction with the
outside world is likely to fail: files may not open, network transmissions may fail,
users may input invalid data. We would like to be able to state precisely how
effectful operations may affect the state of the outside world, what failures might
occur, and guarantee that they are all handled appropriately, ideally without
imposing significant proof burden on a progammer.

1.1 Contributions

In the rest of this paper I describe, by example, a more sophisticated implement-
ation of effects which supports reasoning about state transitions which are
not known until run-time, e.g. whether opening a file was successful, overcoming
the previous limitations. I make the following specific contributions:

– I show how parameterising algebraic effects over resources leads to the ability
to reason about stateful, side-effecting programs.

– I show how effects, when extended to support parameterised effects, can
support precise run-time dependent APIs for stateful libraries.

– I give a concrete example of a stateful program, a mystery word guessing
game, which is specified as a resource-dependent algebraic effect.

2 Effectful Programming in Idris

In this section, I give a brief introduction to programming with side-effects
in Idris. A complete tutorial1 and details of the implementation [4] are given
elsewhere.

An effectful program f has a type of the following form:

f : (x1 : a1) -> (x2 : a2) -> ... ->
{ eff ==> {result} effs’ } Eff m t

1 http://eb.host.cs.st-andrews.ac.uk/drafts/eff-tutorial.pdf



That is, the return type gives the effects that f supports (effs, of type List
EFFECT), the effects available after running f (effs’) which may depend on
the result of the operation result of type t. It also gives the computation
context in which it runs. The computation context can be any function of type
Type -> Type, for example id. When we come to run an effectful program in
{ effs ==> {result} effs’ } Eff m t, the result will be of type m t.

A function which does not update its available effects has a type of the
following form:

f : (x1 : a1) -> (x2 : a2) -> ... -> { eff } Eff m t

In fact, the notation { eff } is itself syntactic sugar, in order to make Eff
types more readable. The type of Eff is:

Eff : (m : Type -> Type) -> (x : Type) ->
List EFFECT -> (x -> List EFFECT) -> Type

That is, it is indexed over a computation context, the type of the computation,
the list of input effects and a function which computes the output effects from
the result. Idris supports a notation for extending syntax, which allows us to
create syntactic sugar for Eff as described above:

syntax "{" [inst] "}" [eff] = eff inst (\result => inst)
syntax "{" [inst] "==>" "{" {b} "}" [outst] "}" [eff]

= eff inst (\b => outst)
syntax "{" [inst] "==>" [outst] "}" [eff]

= eff inst (\result => outst)

2.1 Example Effectful Programs

A program which carries a state and outputs it to the console might have the
following type:

writeState : Show a => { [STATE a, STDIO] } Eff IO ()

That is, it can read and write a state of type a, it can perform Console I/O, and
it runs in context IO. Each effect carries a corresponding resource which is used
when executing an effectful program. STATE a for example carries a resource of
type a. If there are multiple effects of the same type, they can be disambiguated
by labelling, although we will not require this in the present paper.

More generally, a function can update the available effects, depending on its
output. For example, a program which attempts to open a file in a particular
mode (Read or Write) could have the following type:

open : String -> (m : Mode) ->
{ [FILE_IO ()] ==>

{ok} [FILE_IO (if ok then OpenFile m else ())] }
Eff IO Bool



The FILE_IO effect carries the current state of a file handle. It begins as the unit
type (i.e. no file handle is carried in its resource). If opening the file is successful
(i.e., open returns True and hence ok is True) then a file handle is available,
otherwise it is not.

If a file is available which is open for reading, we can use readFile to
retrieve its contents:

readFile : { [FILE_IO (OpenFile Read)] }
Eff IO (List String)

Using this, we can write a program which opens a file, reads it, then displays the
contents and closes it, correctly following a resource usage protocol (where the
!-notation, directly applying an effectful operation, is explained further below):

dumpFile : String -> { [FILE_IO (), STDIO] } Eff IO ()
dumpFile name = case !(open name Read) of

True => do putStrLn (show !readFile)
close

False => putStrLn ("Error!")

The type of dumpFile, with FILE_IO () in its effect list, indicates that any
use of the file resource will follow the protocol correctly (i.e. it both begins and
ends with an empty resource). If we fail to follow the protocol correctly (perhaps
by forgetting to close the file, failing to check that open succeeded, or opening
the file for writing) then we will get a compile-time error.

2.2 !-notation

Just as with monadic programming in Haskell, we can use do-notation to sequence
effectful operations. In many cases, however, do-notation can make programs
unnecessarily verbose, particularly in cases where the value bound is used once,
immediately. The following program returns the length of the String stored in
a state, for example:

stateLength : { [STATE String] } Eff m Nat
stateLength = do x <- get

pure (length x)

Here, pure injects a pure value into an effectful program (like return in Haskell).
Idris provides !-notation to allow a more direct style:

stateLength : { [STATE String] } Eff m Nat
stateLength = pure (length !get)

The notation !expr means that the expression expr should be evaluated and
then implicitly bound. Conceptually, we can think of ! as being a prefix function
with the following type:

(!) : { xs } Eff m a -> a



Note, however, that it is syntax, not a! In practice, a subexpression !expr will
lift expr as high as possible within its current scope, bind it to a fresh name
x, and replace !expr with x. Expressions are lifted depth first, left to right. In
practice, !-notation allows us to program in a more direct style, while still giving
a notational clue as to which expressions are effectful.

2.3 Pattern-matching bind

It might seem that having to test each potentially failing operation with a case
clause could lead to ugly code, with lots of nested case blocks. Many languages
support exceptions to improve this, but unfortunately exceptions may not allow
completely clean resource management—for example, guaranteeing that any
open which did succeed has a corresponding close.

Idris supports pattern-matching bindings, such as the following:

dumpFile : String -> { [FILE_IO (), STDIO] } Eff IO ()
dumpFile name = do True <- open name Read

putStrLn (show !readFile)
close

This also has a problem: we are no longer dealing with the case where opening a
file failed! The Idris solution is to extend the pattern-matching binding syntax
to give brief clauses for failing matches. Here, for example, we could write:

dumpFile : String -> { [FILE_IO (), STDIO] } Eff IO ()
dumpFile name = do True <- open name Read

| False => putStrLn "Error"
putStrLn (show !readFile)
close

This is exactly equivalent to the definition with the explicit case. In general, in
a do-block, the syntax. . .

do pat <- val | <alternatives>
p

. . . is desugared to. . .

do x <- val
case x of

pat => p
<alternatives>

There can be several alternatives, separated by a vertical bar |.

3 Implementing Resource-Dependent Effects

In this section, I show how effects can be implemented in order to model resource
usage protocols, using the STATE effect as an illustrative example, and extending
this to resource-dependent effects with FILE_IO.



3.1 State

Effects are described by algebraic data types, where the constructors describe the
operations provided by the effect. Stateful operations are described as follows:

data State : Effect where
Get : { a } State a
Put : b -> { a ==> b } State ()

Each effect is associated with a resource, the type of which is given with the
notation { x ==> x’ }. This notation gives the resource type expected by
each operation, and how it updates when the operation is run. Here, it means:

– Get takes no arguments. It has a resource of type a, which is not updated,
and running the Get operation returns something of type a.

– Put takes a b as an argument. It has a resource of type a on input, which
is updated to a resource of type b. Running the Put operation returns the
element of the unit type.

Effect itself is a type synonym, declared as follows:

Effect : Type
Effect = (result : Type) ->

(input_resource : Type) ->
(output_resource : result -> Type) -> Type

That is, an effectful operation returns something of type result, has an input
resource of type input_resource, and a function output_resource which
computes the output resource type from the result. We use the same syntactic
sugar as with Eff to make effect declarations more readable.

In order to convert State (of type Effect) into something usable in an
effects list, of type EFFECT, we write the following:

STATE : Type -> EFFECT
STATE t = MkEff t State

MkEff constructs an EFFECT by taking the resource type (here, the t which
parameterises STATE) and the effect signature (here, State). For reference,
EFFECT is declared as follows:

data EFFECT : Type where
MkEff : Type -> Effect -> EFFECT

To be able to run an effectful program in Eff, we must explain how it is executed
in a particular computation context. This is achieved with the following class:

class Handler (e : Effect) (m : Type -> Type) where
handle : res -> (eff : e t res res’) ->

((x : t) -> res’ x -> m a) -> m a

An instance of Handler e m means that the effect declared with signature
e can be run in computation context m. The handle function takes:



– The resource res on input (so, the current value of the state for State)
– The effectful operation (either Get or Put x for State)
– A continuation, which we conventionally call k, and should be passed the

result value of the operation, and an updated resource.

A Handler for State simply passes on the value of the state, in the case of
Get, or passes on a new state, in the case of Put. It is defined the same way for
all computation contexts2:

using (m : Type -> Type)
instance Handler State m where

handle st Get k = k st st
handle st (Put n) k = k () n

This gives enough information for Get and Put to be used directly in Eff
programs. It is tidy, however, to define top level functions in Eff, as follows:

get : { [STATE x] } Eff m x
get = Get

put : x -> { [STATE x] } Eff m ()
put val = Put val

putM : y -> { [STATE x] ==> [STATE y] } Eff m ()
putM val = Put val

An implementation detail (aside): In fact, we are not really using the Get
and Put operations directly. Rather, we are using an implicit function which
converts an Effect to a function in Eff, given an automatically constructed
proof that the effect is available:

implicit
effect’ : {a, b: _} -> {e : Effect} ->

(eff : e t a b) ->
{prf : EffElem e a xs} ->
Eff m t xs (\v => updateResTy v xs prf eff)

3.2 File Management

Result-dependent effects are, in general, no different from non-dependent effects
in the way they are implemented. The FILE_IO effect, for example, is declared
as in Listing 1.1 with the state transitions made explicit.

The syntax for state transitions { x ==> {res} x’ }, where the result
state x’ is computed from the result of the operation res, follows that for the
equivalent Eff programs. The most important operation declared in this effect
signature is Open, the type of which captures the possibility of failure.
2 The using notation simply gives a type for any implicit arguments in the using
block



Listing 1.1. File I/O effect
data FileIO : Effect where

Open : String -> (m : Mode) ->
{() ==> {ok} if ok

then OpenFile m
else ()} FileIO Bool

Close : {OpenFile m ==> ()} FileIO ()

ReadLine : {OpenFile Read} FileIO String
WriteLine : String -> {OpenFile Write} FileIO ()
EOF : {OpenFile Read} FileIO Bool

Before executing Open, the resource state must be empty (i.e., there is no
file handle). After executing Open, we either have a file handle, open for the
appropriate mode (if ok is True) or no file. This can be made into a function in
Eff as follows (we have already seen the type of open in Section 2.1):

open : String -> (m : Mode) ->
{ [FILE_IO ()] ==>

{ok} [FILE_IO (if ok then OpenFile m else ())] }
Eff IO Bool

open f m = Open f m

This type illustrates the crucial distinction between resource-dependent effects
and the previous implementation [4]. Namely, the output effects are computed
for a result which will become known only at run-time. As a result, the only way
for a program using the open operation to be well-typed is for it to check the
result at run-time:

dumpFile : String -> { [FILE_IO (), STDIO] } Eff IO ()
dumpFile name = case !(open name Read) of

True => do putStrLn (show !readFile)
close

False => putStrLn ("Error!")

By performing case analysis on the result of open name Read here, we spe-
cialise the type of the resource in each branch according to whether the result is
True or False, meaning that the if...then...else construct in the output
resource can be reduced further. The Handler for FileIO is written as in
Listing 1.2.

Note that in the handler for Open, the types passed to the continuation k
are different depending on whether the result is True (opening succeeded) or
False (opening failed). This uses validFile, defined in the Prelude, to test
whether a file handler refers to an open file or not.



Listing 1.2. File I/O handler
instance Handler FileIO IO where

handle () (Open fname m) k
= do h <- openFile fname m

if !(validFile h) then k True (FH h)
else k False ()

handle (FH h) Close k
= do closeFile h

k () ()

handle (FH h) ReadLine k = do str <- fread h
k str (FH h)

handle (FH h) (WriteLine str) k = do fwrite h str
k () (FH h)

handle (FH h) EOF k = do e <- feof h
k e (FH h)

4 Example: A “Mystery Word” Guessing Game

In this section, we will use effects to implement a larger example, a simple
text-based word-guessing game. The effect will allow us to express the rules of
the game formally and precisely, with a resource-dependent effect allowing the
machine to update game state at run-time, according to information which will
only be known at run-time.

In the game, the computer chooses a word, which the player must guess letter
by letter. After a limited number of wrong guesses, the player loses3. We will
implement the game by following these steps:

1. Define the game state, in enough detail to express the rules
2. Define the rules of the game (i.e. what actions the player may take, and how

these actions affect the game state)
3. Implement the rules of the game (i.e. implement state updates for each action)
4. Implement a user interface which allows a player to direct actions

Step 2 may be achieved by defining an effect which depends on the state defined
in Step 1. Then Step 3 involves implementing a Handler for this effect. Finally,
Step 4 involves implementing a program in Eff using the newly defined effect
(and any others required to implement the interface). By using effects, we
can be certain that our implementation of the game follows the rules we have
specified.

3 Readers may recognise this game by the name “Hangman”.



4.1 Step 1: Game State

First, we categorise the game states as running games (where there are a number
of guesses available, and a number of letters still to guess), or non-running games
(i.e. games which have not been started, or games which have been won or lost).

data GState = Running Nat Nat | NotRunning

Notice that at this stage, we say nothing about what it means to make a guess,
what the word to be guessed is, how to guess letters, or any other implementation
detail. We are only interested in what is necessary to describe the game rules.
We will, however, parameterise a concrete game state Mystery over this data:

data Mystery : GState -> Type

4.2 Step 2: Game Rules

We describe the game rules as a resource-dependent effect, where each action has
a precondition (i.e. what the game state must be before carrying out the action)
and a postcondition (i.e. how the action affects the game state). Informally, these
actions with the pre- and postconditions are:

Guess Guess a letter in the word.
– Precondition: The game must be running, and there must be both guesses

still available, and letters still to be guessed.
– Postcondition: If the guessed letter is in the word and not yet guessed,

reduce the number of letters, otherwise reduce the number of guesses.
Won Declare victory

– Precondition: The game must be running, and there must be no letters
still to be guessed.

– Postcondition: The game is no longer running.
Lost Accept defeat

– Precondition: The game must be running, and there must be no guesses
left.

– Postcondition: The game is no longer running.
NewWord Set a new word to be guessed

– Precondition: The game must not be running.
– Postcondition: The game is running, with 6 guesses available (the choice

of 6 is somewhat arbitrary here) and the number of unique letters in the
word still to be guessed.

StrState Get a string representation of the game state. This is for display
purposes; there are no pre- or postconditions.

We can make these rules precise by declaring them more formally in an effect
signature:



data MysteryRules : Effect where
Guess : (x : Char) ->

{ Mystery (Running (S g) (S w)) ==>
{inword} if inword

then Mystery (Running (S g) w)
else Mystery (Running g (S w)) }

MysteryRules Bool
Won : { Mystery (Running g 0) ==>

Mystery NotRunning } MysteryRules ()
Lost : { Mystery (Running 0 g) ==>

Mystery NotRunning } MysteryRules ()
NewWord : (w : String) ->

{ Mystery NotRunning ==>
Mystery (Running 6 (length (letters w))) }

MysteryRules ()
StrState : { Mystery h } MysteryRules String

This description says nothing about how the rules are implemented. In particular,
it does not specify how to tell whether a guessed letter was in a word, just that
the result of Guess depends on it.

Nevertheless, we can still create an EFFECT from this, and use it in an Eff
program. Implementing a Handler for MysteryRules will then allow us to
play the game.

MYSTERY : GState -> EFFECT
MYSTERY h = MkEff (Mystery h) MysteryRules

4.3 Step 3: Implement Rules

To implement the rules, we begin by giving a concrete definition of game state:

data Mystery : GState -> Type where
Init : Mystery NotRunning
GameWon : (word : String) -> Mystery NotRunning
GameLost : (word : String) -> Mystery NotRunning
MkG : (word : String) ->

(guesses : Nat) ->
(got : List Char) ->
(missing : Vect m Char) ->
Mystery (Running guesses m)

If a game is NotRunning, that is either because it has not yet started (Init)
or because it is won or lost (GameWon and GameLost, each of which carry the
word so that showing the game state will reveal the word to the player). Finally,
MkG captures a running game’s state, including the target word, the letters
successfully guessed, and the missing letters. Using a Vect for the missing letters
is convenient since its length is used in the type.



To initialise the state, we implement the following functions: letters, which
returns a list of unique letters in a String (ignoring spaces) and initState
which sets up an initial state considered valid as a postcondition for NewWord.

letters : String -> List Char
initState : (x : String) ->

Mystery (Running 6 (length (letters x)))

When checking if a guess is in the vector of missing letters, it is convenient to
return a proof that the guess is in the vector, using isElem below, rather than
merely a Bool:

data IsElem : a -> Vect n a -> Type where
First : IsElem x (x :: xs)
Later : IsElem x xs -> IsElem x (y :: xs)

isElem : DecEq a =>
(x : a) -> (xs : Vect n a) -> Maybe (IsElem x xs)

The reason for returning a proof is that we can use it to remove an element from
the correct position in a vector:

shrink : (xs : Vect (S n) a) -> IsElem x xs -> Vect n a

Having implemented these, the Handler implementation for MysteryRules
simply involves directly updating the game state in a way which is consistent
with the declared rules:

using (m : Type -> Type)
instance Handler MysteryRules m where
handle (MkG w g got []) Won k = k () (GameWon w)
handle (MkG w Z got m) Lost k = k () (GameLost w)

handle st StrState k = k (show st) st
handle st (NewWord w) k = k () (initState w)

handle (MkG w (S g) got m) (Guess x) k =
case isElem x m of

Nothing => k False (MkG w _ got m)
(Just p) =>

k True (MkG w _ (x :: got) (shrink m p))

In particular, in Guess, if the handler claims that the guessed letter is in the
word (by passing True to k), there is no way to update the state in such a
way that the number of missing letters or number of guesses does not follow the
rules—this would be a compile-time type error.



4.4 Step 4: Implement Interface

Having described the rules, and implemented state transitions which follow those
rules as an effect handler, we can now write an interface for the game which uses
the MYSTERY effect:

game : { [MYSTERY (Running (S g) w), STDIO] ==>
[MYSTERY NotRunning, STDIO] } Eff IO ()

The type indicates that the game must start in a running state, with some guesses
available, and eventually reach a not-running state (i.e. won or lost). The only
way to achieve this is by correctly following the stated rules. A possible complete
implementation of game is presented in Listing 1.3.

Note that the type of game makes no assumption that there are letters to be
guessed in the given word (i.e. it is w rather than S w). This is because we will
be choosing a word at random from a vector of Strings, and at no point have
we made it explicit that those Strings are non-empty.

Finally, we need to initialise the game by picking a word at random from a
list of candidates, setting it as the target using NewWord, then running game:

runGame : { [MYSTERY NotRunning, RND, SYSTEM, STDIO] }
Eff IO ()

runGame = do srand (cast !time)
let w = index !(rndFin _) words
NewWord w
game
putStrLn !StrState

We use the system time (provided by SYSTEM) to initialise the random number
generator (provided by RND), then pick a random element of a finite set Fin to
index into a list of words. For example, we could initialise a word list as follows:

words : ?wtype
words = with Vect ["idris","agda","haskell","miranda",

"java","javascript","fortran","basic",
"clean","links","coffeescript","rust"]

wtype = proof search

Aside: Rather than have to explicitly declare a type with the vector’s length,
it is convenient to give a metavariable ?wtype and let Idris’s proof search
mechanism find the type. This is a limited form of type inference, but very useful
in practice.

5 Related Work

There has been much recent interest in using algebraic effects to support moduler,
composable effectful programming. The effects library was initially inspired
by Bauer and Pretnar’s Eff language [2], and there have been successful efforts



Listing 1.3. Mystery Word Game Implementation

game : { [MYSTERY (Running (S g) w), STDIO] ==>
[MYSTERY NotRunning, STDIO] } Eff IO ()

game {w=Z} = Won
game {w=S _}

= do putStrLn !StrState
putStr "Enter guess: "
let guess = trim !getStr
case choose (not (guess == "")) of

(Left p) => processGuess (strHead’ guess p)
(Right p) => do putStrLn "Invalid input!"

game
where
processGuess : Char ->

{ [MYSTERY (Running (S g) (S w)), STDIO] ==>
[MYSTERY NotRunning, STDIO] }

Eff IO ()
processGuess {g} {w} c

= case !(Main.Guess c) of
True => do putStrLn "Good guess!"

case w of
Z => Won
(S k) => game

False => do putStrLn "No, sorry"
case g of

Z => Lost
(S k) => game

to implement handlers of algebraic effects in Haskell and other languages [9,10].
Unlike the effects library, these systems do not attempt to support reasoning
about resource usage or state updates, but are flexible in other ways such as
allowing handlers of effects to be reordered. Other languages aim to bring effects
into their type system, such as Disciple [12], Frank4 and Koka5. These languages
are built on well-studied theoretical foundations [8,11,14,15], which we have also
applied in the effects library.

The resource-dependent effect library described in this paper is a refinement of
previous work [4] implementing algebraic effects in Idris. An important limitation
of this work was the difficulty of dealing with errors. This was improved to some
extent in order to implement libraries for web programming [6] by adding an
explicit error-checking construct, but this too has proved limited in practice for
implementing more complex protocols. Inspired by McBride [13], the present
implementation allows the result type of an effectful operation to depend on

4 https://personal.cis.strath.ac.uk/conor.mcbride/pub/Frank/
5 http://research.microsoft.com/en-us/projects/koka/



run-time information, with compile-time checks enforced by the type system
ensuring that any necessary run-time checks are made.

The problem of reasoning about resource usage protocols has previously
been tackled using special purpose type systems [17], by creating DSLs for
resource management [5], or with Typestate [1,16]. These are less flexible than the
effects approach, however, since combining resources is difficult. In effects,
we can combine resources simply by extending the list of available effects.

6 Conclusion

The effects system extends the previous implementation by allowing precise
reasoning about state updates, even in the presence of information which is not
known until run-time. By capturing the possibility of failure in the resource
state of an effect, we know that a programmer cannot avoid handling failure.
Lightweight syntactic sugar, such as !-notation and pattern matching alternatives
mean that programs remain short and readable.

In the Mystery Word game, I wrote the rules separately as an effect, then wrote
an implementation which uses that effect. This ensures that the implementation
must follow the rules. In practice, we would not expect to follow a strict process of
writing the rules first then implementing the game once the rules were complete.
Indeed, I did not do so when constructing the example! Rather, I wrote down a
first draft of the rules making any assumptions explicit in the state transitions
for MysteryRules. Then, when implementing game at first, any incorrect
assumption was caught as a type error. The following errors were caught during
development:

– Not realising that allowing NewWord to be an arbitrary string would mean
that game would have to deal with a zero-length word as a starting state.

– Forgetting to check whether a game was won before recursively calling
processGuess, thus accidentally continuing a finished game.

– Accidentally checking the number of missing letters, rather than the number
of remaining guesses, when checking if a game was lost.

While these are simple errors, they were caught by the type checker before any
testing of the game. This approach has practical applications in more serious
contexts; MysteryRules for example can be thought of as describing a protocol
that a game player most follow, or alternative a precisely-typed API. Precise
reasoning about resource usage, and constraints on ordering of operations and
error checking, can be particularly important in safety and security critical
contexts. For example, a recent security flaw in Apple’s iOS6 was caused in part
by faulty error handling code in an SSL key exchange protocol.

We are currently using resource-dependent effects to implement a DSL for
type-safe communication, similar to session types [7]. Using this, we plan to

6 http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-1266



investigate verification of security properties of protocols. In this context, resource-
dependency is essential: the execution of the protocol depends on values which
are communicated across a network or given by a user, which cannot be known
until run-time.
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