
Fundamenta Informaticae XX (2009) 1–31 1

IOS Press

Correct-by-Construction Concurrency: using Dependent Types to
Verify Implementations of Effectful Resource Usage Protocols

Edwin Brady

Kevin Hammond
School of Computer Science, University of St Andrews, St Andrews, Scotland.

Email: {eb,kh}@cs.st-andrews.ac.uk

Abstract. In the modern, multi-threaded, multi-core programming environment, correctly manag-
ing system resources, including locks and shared variables, can be especially difficult and error-
prone. A simple mistake, such as forgetting to release a lock, can have major consequences on the
correct operation of a program, by, for example, inducing deadlock, often at a time and location that
is isolated from the original error. In this paper, we propose a new type-based approach to resource
management, based on the use of dependent types to construct a Domain-Specific Embedded Lan-
guage (DSEL) whose typing rules directly enforce the formal program properties that we require.
In this way, we ensure strong static guarantees of correctness-by-construction, without requiring
the development of a new special-purpose type system or the associated special-purpose soundness
proofs. We also reduce the need for “over-serialisation”, the overly-conservative use of locks that
often occurs in manually constructed software, where formal guarantees cannot be exploited. We
illustrate our approach by implementing a DSEL for concurrent programming and demonstrate its
applicability with reference to an example based on simple bank account transactions.

1. Introduction

As multi-core architectures become more common, so approaches to concurrency based on serialising
access to system resources become a major potential performance bottleneck. “Truly concurrent” ac-
cess to system resources [23], where any thread may initiate an I/O request in any required order, is
essential to provide high performance in this new setting. However, locking and other concurrency is-
sues make this a difficult and error-prone environment for the typical programmer. In order to guarantee
safety, it is common practice to use locks wherever the programmer is uncertain about concurrent ac-
cess to a resource (even where they are certain that there is no concurrent access, programmers may
still include locks in order to ensure robustness in the face of future software changes). It is our con-
tention that if acceptable safety is to be maintained without sacrificing important potential performance



2 Edwin Brady and Kevin Hammond / Correct-by-Construction Concurrency

benefits, programmer access to system resources should ideally be through verified implementations of
formally-specified resource protocols, supported by appropriate programming language abstractions. A
good programming abstraction will both ensure safety and minimise the frequency of locking and other
overhead costs. In this way, we aim to achieve “correctness-by-construction” [2] for concurrent systems,
where any valid concurrent program is formally guaranteed to possess certain required properties. Using
such an approach both improves software reliability and reduces development costs, through eliminating
unnecessary testing and debugging steps. This paper therefore studies how “true concurrency” can be
achieved in a sound way, using verified, correct-by-construction software implementing the required lock
access policy.

Popeea and Chin have previously observed [42] that there are, in fact, two key facets to verifying
resource access protocols: protocol verification, to ensure that the protocol conforms to the required
formal properties; and usage verification, to ensure that resources are accessed and used in accordance
with the protocol. We have previously considered the former problem, exploiting dependent types to
yield programs that conform, by construction, to required bounds on resource consumption, in terms of
time, memory or other resources [6, 7]. This paper considers the complementary problem of resource
usage verification, under the assumption of an already verified protocol. We use a type-based approach
to managing locks on shared state, and so construct a simple dependently-typed Domain-Specific Em-
bedded Language (DSEL) that captures locking information. The typing rules of this DSEL then directly
enforce the required safety properties, including the safe acquisition and release of resource locks.

1.1. Contributions of this Paper

In illustrating a type-based approach to resource usage verification, this paper makes a number of novel
contributions. It directly addresses language-based safety and security issues in a multi-threaded envi-
ronment with shared state, considering relevant theoretical and practical considerations for controlling
resource locks on multi-threaded systems. The three main technical contributions made here are:

1. We give a new framework for state-handling domain-specific embedded languages (DSELs) using
a dependently typed host language (Section 5).

2. We show how to specify and use a resource access protocol in a dependently typed functional
language using a DSEL. Since our host language has a sufficiently strong type system, we achieve
soundness without needing to construct specialised correctness proofs (Section 6).

3. We design, implement, and consequently prove correct, a concurrent programming notation which
guarantees: i) that all resources are requested before use; ii) that all acquired resources are released
before program exit; and iii) that deadlock does not occur (Sections 4–6).

As discussed above, there is a danger of over-serialising concurrent software, where a programmer lacks
confidence that basic safety properties are satisfied and therefore uses locks in an overly cautious way.
A consequence of our type-based approach is that the type system gives the programmer confidence that
these properties hold and thus helps prevent such over-serialisation.

In addition to these technical contributions, this paper introduces the IDRIS dependently typed pro-
gramming language (http://www.cs.st-and.ac.uk/∼eb/Idris/). IDRIS is intended as a platform
for experimentation with practical aspects of dependently typed functional programming, such as the



Edwin Brady and Kevin Hammond / Correct-by-Construction Concurrency 3

interaction of dependent types with I/O, shared external state and concurrency used here. The code
and examples in this paper are directly generated from executable IDRIS programs, available from
http://www.cs.st-and.ac.uk/∼eb/ConcDSEL/.

2. Motivating Example: Safe Concurrent Access to Bank Accounts

A major reason that concurrent software is often difficult both to implement correctly, and to prove
correct, is because the order in which processes are executed can be hard or even impossible to determine.
There are potential difficulties with even apparently simple code. For example, there are (at least) two
problems with the following very simple concurrent pseudo-code procedure, which aims to move a sum
of money from one bank account to another. This procedure requests a lock on the resource associated
with each account, to prevent other threads accessing the account in the critical section between the read
and the write. It then moves the money between the accounts and unlocks the resources. Only one thread
may hold a lock at any time. If another thread holds the lock, this thread will block until it is released.

moveMoney(sum, sender, receiver) {
lock(sender);
lock(receiver);
sendFunds = read(sender);
recvFunds = read(receiver);
if (sendFunds < sum) {

putStrLn("Insufficient funds");
return;

}
write(sender, sendFunds - sum);
write(receiver, recvFunds + sum);
unlock(receiver);
unlock(sender);

}

The first problem occurs if there is insufficient funds in the sender’s account. In this case, the moveMoney
function reports an error and then returns, but fails to unlock the resources it has acquired. This has
disastrous consequences, since now no other process can ever access either account! This is a common,
and well-understood problem, but one that still occurs surprisingly often, and which can be very hard
to correct (for example, the original Java approach to resource finalisers has been deprecated precisely
because it is difficult to implement safely in the presence of threads!). The second problem is a little
harder to spot. Imagine that the following calls are made simultaneously in three separate processes:

1. moveMoney(20, Thorsten, Tarmo)

2. moveMoney(10, Tarmo, Per)

3. moveMoney(42, Per, Thorsten)

If each process executes one statement in turn, execution proceeds as follows:

1. Thorsten sends Tarmo £20, beginning by executing lock(Thorsten).

2. Tarmo sends Per £10, beginning by executing lock(Tarmo).



4 Edwin Brady and Kevin Hammond / Correct-by-Construction Concurrency

3. Per sends Thorsten £42, beginning by executing lock(Per).

Now all three resources are locked — none of the processes can lock the resource associated with the
receiver! The system is deadlocked. This second problem occurs not in the code, but in the execution
environment. Nevertheless, the problem is caused by the code — no attempt has been made to prevent
deadlocks such as this occurring1.

Concurrent systems such as the one above are naturally and inherently stateful, and their correct op-
eration relies on it being impossible for them to enter invalid states, such as attempting to return from
a process without releasing resources or requesting system resources in the wrong order. In traditional
imperative programming languages, such properties cannot in general be checked mechanically — for
most systems, correctness relies either on informal coding conventions, the deployment of a costly run-
time monitor, or explicit dynamic checking; or in those cases where safety is paramount, perhaps the use
of model checking or some other formal method. Even a formal approach, such as model checking, is
not infallible, however — the state space may be large, the system must be correctly transcribed from the
model, and the resulting system cannot be modified without reconstructing and re-verifying the model.

In this paper, we will explore how dependently typed, purely functional programming can provide
a means for checking properties such as those described above statically and within the implementation
itself, thereby guaranteeing that resources are requested and released as necessary without the risk of
causing deadlock. We will achieve this by implementing a domain specific embedded language (DSEL)
within a host dependently typed language.

3. Dependently Typed Programming

IDRIS is a full-spectrum dependently typed programming language, similar to EPIGRAM [33, 34] or
AGDA2, built on top of the IVOR [5] theorem proving library. It is a purely functional language with
a syntax similar to Haskell plus General Algebraic Data Types (GADTs) [40]. By default, all IDRIS

functions are total: this is guaranteed in the manner suggested by Turner [47], by requiring that all
possible cases are covered by every definition, and that recursive calls proceed on structurally smaller
values of strictly positive data types. This restriction is required to preserve decidability of type-checking,
and to ensure total correctness of proofs, but can be relaxed by the programmer if partial correctness only
is required. The purpose of the IDRIS language is to provide a platform for practical programming with
dependent types. We have used our own implementation, rather than an existing tool, as this gives us
complete freedom to experiment with abstractions and language features beyond the type system, such
as I/O and concurrency. In addition, although unrelated to the work that we present in this paper, the core
language of IDRIS is intended as an important step towards a fully dependently typed implementation
of the real-time Hume language [15]. In this section, we introduce some features of IDRIS and describe
some important basic techniques in dependently typed programming. A more detailed introduction to
dependently typed programming can be found elsewhere [33].

1A possible, widely-used, solution to this problem is to impose a priority ordering on resources (for example, account number)
and to always lock the higher priority resource first. We will return to this later.
2http://wiki.portal.chalmers.se/agda/



Edwin Brady and Kevin Hammond / Correct-by-Construction Concurrency 5

3.1. Informative Testing

We illustrate the syntax of IDRIS with a simple example showing one of the key techniques in depen-
dently typed programming, namely the use of indexed data types for providing informative results of
tests. In a simply-typed programming language, testing a value is completely dynamic. For example, if
we were to lookup an index in a list in Haskell, we would use the (!!) function:

(!!) :: [a] -> Int -> a
(!!) (x:xs) 0 = x
(!!) (x:xs) n = (!!) xs (n-1)

(where xs!!0 returns the first element of list xs, and so on). Suppose we use this function as follows:

if (xs!!i) == y then foo xs else bar xs

Since we have made a choice based on the i th element of xs, we ought to know statically that, in the then
branch, it is safe to make certain assumptions, e.g. that xs has at least i elements, that y is a member
of xs, and so on; and, as programmers, we do, of course, regularly make such assumptions based on
our own knowledge of the code. The compiler, however, has no such knowledge and therefore cannot
guarantee that the assumptions that we have made are valid. We consequently find out about our mistakes
only when we encounter a run-time error. In general-purpose systems, this is merely inconvenient and
painful. In safety-critical systems, this may be literally fatal. Dependent types allow us to avoid such
problems by permitting us to explicitly state, and implicitly enforce, our assumptions.

For example, consider the following data type representing vectors (sized lists):

data Vect : ?→ N→ ? where
nil : Vect A 0

| cons : A→ Vect A k → Vect A (s k)

This declaration is written in a GADT style: we give the type constructor Vect, which is parameterised
over a type and a natural number (? is the type of types), followed by a list of data constructors and their
types. Corresponding to this, we have the finite sets which we can use to represent bounded numbers:

data Fin : N→ ? where
f0 : Fin (s k)

| fs : Fin k → Fin (s k)

Finite sets are parameterised over the number of values the set can contain. We can read Finn as the type
of “a number less than n .” We now write the bounds-safe lookup corresponding to !!:

vlookup : Fin k → Vect A k → A
vlookup f0 (cons x xs) 7→ x
vlookup (fs i) (cons x xs) 7→ vlookup i xs

Since we have dependent types, we can, in fact, do even better. If we know that the i th element of a list
xs has the value a , we can write a predicate to state this. The ElemIs data type expresses this:



6 Edwin Brady and Kevin Hammond / Correct-by-Construction Concurrency

data ElemIs : Fin n → A→ Vect A n → ? where
first : ElemIs f0 x (cons x xs)

| later : ElemIs i x ys → ElemIs (fs i) x (cons y ys)

So rather than simply looking up a value, given a list and an index, we instead compute a predicate which
is a proof that the element that we looked up is stored at the given index, using the following function:

elemIs : (i : Fin n)→ (xs : Vect A n)→ ElemIs i (vlookup i xs) xs
elemIs f0 (cons x xs) 7→ first

elemIs (fs k) (cons x xs) 7→ later (elemIs k xs)

Note that in the type of elemIs, we name the arguments i and xs , since the return type depends on the
value of these arguments. Names can optionally be given in other cases, even if the return type does not
depend on an argument. Here, we name arguments where it helps to document an argument’s purpose.
IDRIS checks exhaustiveness of the patterns for elemIs by unification — all other possible patterns (e.g.
for nil) generate a unification error because the index i (of type Fin n) and vector xs (of type Vect A n)
must have the same bounds.

Depending on our application, we can use as much or as little of the information given by elemIs as
we need. Often, simply looking up the element with vlookup is sufficient. However, depending on the
nature of the safety requirements, we may need to keep the membership proof for longer. In this paper,
we will see examples where computing and retaining such proofs gives strong safety guarantees over the
entire lifetime of the program.

3.2. Collapsible data structures

ElemIs is an example of a collapsible data structure [8]. Collapsible data structures have the property that
their values can be uniquely determined from their indices. In other words, ElemIs i x xs has at most one
element for any i , x and xs . Concretely, a type is collapsible if one index has mutually exclusive values
for each constructor, and if all constructor arguments are recursive. In the case of ElemIs, first has an
index of f0 and later has an index of fs i , so it follows that the indices uniquely determine the constructor.
Furthermore, the only argument to later is recursive. Collapsibility has two important consequences:

• At compile-time, if the indices are statically known, for example from a function type, the value
can be filled in automatically. This is important from a programming point of view, because it
means that proofs need not be given explicitly in the type.

• At run-time, the value can be discarded, as detailed in [4, 8], since it contains no more information
than the indices. This is important from an efficiency point of view — we are able to use the
computational information that ElemIs gives us, without the overhead of actually storing the proofs
at run-time.

It is important to realise, therefore, that the presence of such proofs in our programs has absolutely no
performance penalty.



Edwin Brady and Kevin Hammond / Correct-by-Construction Concurrency 7

3.3. I/O with dependent types

We require input/output operations to be executable from within our language. To achieve this, we
exploit Hancock and Setzer’s I/O model [16]. This involves implementing a Haskell-style IO monad [41]
by defining commands, representing externally executed I/O operations, and responses, which give the
type of the value returned by a given command. Compiling I/O programs via C then simply involves
translating the commands into their C equivalents. IDRIS implements a simplified form of do notations
which translates directly to bind and return functions in the IO monad.

For the programs we will discuss in this paper, we will require the following operations:

fork : IO ()→ IO ()
newLock : Int→ IO Lock

lock,unlock : Lock→ IO ()
newIORef : A→ IO (IORef A)
readIORef : IORef A→ IO A
writeIORef : IORef A→ A→ IO ()

Lock is an externally implemented semaphore, created by newLock, with lock and unlock requesting
and releasing the semaphore. The other functions behave in exactly the same way as their Haskell
equivalents: forking new processes; and creating, reading from and writing to reference locations. Our
implementation is built on the pthreads library, an implementation of the POSIX threads standard [9].

4. Resources for Concurrent Programming

We have seen above that dependent types offer a way to specify and to verify important program proper-
ties. However, in practice, many realistic problems require interaction with the outside world and manip-
ulation of state. Our goal is to capture this state management in a program’s type, and use the power of
dependent types to verify the correct management of low-level resources in concurrent software, with-
out unnecessarily restricting any other operations which have no impact on resource management. In
this section, we consider the resources we wish to manage, the properties which those resources should
maintain, and how to formalise those properties.

4.1. Ensuring Safe Resource Access

A key requirement of concurrent programs is that they manage external, shared resources safely. A
classic problem which may arise in this setting involves two threads that both increment a shared variable,
var . Each thread will read the contents of var , increment it, and then write the result back to var :

increment = do val ← READ var
WRITE (val + 1) var

Clearly, the correct outcome is for the value stored in the shared variable to have increased by two.
If, however, both threads read the variable simultaneously, then each thread will increment the original
value, and the result will be that the value has increased by only one rather than by two! Naturally,
the solution to this race condition is to treat the variable as a shared resource which should be locked



8 Edwin Brady and Kevin Hammond / Correct-by-Construction Concurrency

throughout the critical sequence. We aim to prevent such errors from occurring by ensuring that all
shared variables are locked before they are accessed.

4.2. Preventing Deadlock

A second challenge that occurs in more complex concurrent programs is deadlock avoidance: namely
preventing a situation where two or more threads are waiting for each other to release some resource.
Determining whether deadlock occurs is, in general, undecidable. If we want a sound and complete
approach to proving the absence of deadlock statically, we could define a type which specifies deadlock
freedom and would need to prove by hand that a concurrent program has that type by reasoning about
all possible execution orders. However, if we want to avoid such complexity in the proofs of deadlock
freedom, it will be necessary to restrict the system in some way.

The approach we have chosen still requires some hand written proofs, but avoids the complexity of
reasoning about all possible execution orders, at the expense of being incomplete (i.e. rejecting some
deadlock-free programs). It is based on the observation that there are four necessary conditions for a
deadlock to occur [10]:

1. Resources are mutually exclusive, i.e. only one process at a time can access the resource;

2. Processes may request the use of additional resources;

3. Only a process with access to a resource may release it; and

4. Two or more processes form a circular chain, with each process waiting for a resource currently
held by the next process in the chain.

If we can prevent any of these four conditions from occurring, then deadlock can never occur. Clearly,
the first three will apply in any concurrent system which requires access to shared resources. We aim
to prevent deadlock by enforcing an ordering on resources, and so eliminating condition 4. Although
there is not always an obvious ordering that can be exploited, this method has proven to be useful in
practice [45]. We therefore prevent circular chains from forming by requiring that each resource that a
process requests has a lower priority than any of those that it already holds.

Such difficulties are, of course, dealt with on an everyday basis by concurrency practitioners, who
obtain working solutions for their programs by employing a variety of informal coding conventions.
However, such conventions are difficult to enforce in a safe and secure way across the entire community.
Moreover, the use of locking and unlocking operations is potentially highly error-prone, particularly in
situations where threads may exit under an exception. The (new) approach we take in this paper is to use
dependent types to statically enforce the required constraints on the usage of resources such as locks. In
this way, we can prevent the construction of programs that could violate these constraints, by ensuring,
for example, that race conditions such as the one we have described above can never be encountered.

4.3. Formalising Resource Management

We have two main options for formalising the above properties:



Edwin Brady and Kevin Hammond / Correct-by-Construction Concurrency 9

1. Define and prove sound a special purpose type system which captures these properties, and the
pre- and post-conditions on the required operations. From such a type system, we can extract an
implementation which statically checks the correct usage of resources.

2. Exploiting dependent types, implement the operations in IDRIS, and write the pre- and post-
conditions in the type of each operation.

We have preferred the second approach, for two main reasons. Firstly, we contend that dependent type
theory is strong enough to specify the required properties formally and precisely. We argue that the
soundness of the underlying type system guarantees the correctness of the operations. Secondly, we
are not limited to the operations we choose to define in a special purpose type system, and can use the
full power of the implementation language. Additionally, we would like to explore the strengths and
limitations of dependent types for extra-functional correctness.

Like any formally defined system, the correctness relies on capturing the necessary properties accu-
rately. An advantage of using dependent type theory to capture the properties is that the implementation
and the formalisation itself are the same thing. A dependently typed language gives us exactly the nota-
tion we need to construct a machine-checkable formalisation of the operations we implement.

4.4. The Domain-Specific Embedded Language Approach

A domain-specific language (DSL) is a programming language dedicated to a specific problem domain.
Using a DSL, a domain expert, who is not necessarily a computer programmer, can focus on details
of the problem to be solved, rather than on details of the implementation language. A domain-specific
embedded language [20] (DSEL) is a DSL that has been implemented by embedding the DSL con-
structs into another language, the host language. It is important to maintain a clear distinction between
the implementation language (the host language, here IDRIS) and the language being implemented (the
DSEL). The DSEL approach allows the language implementer to avoid dealing with well understood
aspects of language implementation such as parsing and code generation, and a certain amount of type
checking [20]. It is a commonly applied technique in the Haskell community. Well-known examples
include Parsec [28] and Yampa [12]. Dependent types allow us to take this idea further, using the host
language to express strong guarantees about the DSEL.

5. State-Handling Domain-Specific Embedded Languages

In this section we consider how to implement a state-handling DSEL in IDRIS. We will introduce the
language for concurrency management in two stages:

• Firstly (in this section), we will show the general form of a state-handling DSEL.

• Secondly (in Section 6), we will specialise the language to the concurrency domain, by considering
the state of shared resources.

In general, the programs we consider will manipulate state (i.e., have side effects) and compute a result.
Since our goal is static safety, we will, as far as possible, try to reflect this behaviour in our representa-
tions. The type of the language representation in particular should reflect an input state, an output state



10 Edwin Brady and Kevin Hammond / Correct-by-Construction Concurrency

and a return value. In our initial implementation, we will not consider what form the states might take,
nor any domain-specific types. We limit the initial presentation to control constructs.

5.1. Types

An expression in the DSEL may execute some action (returning the unit type) or return a type in the host
language. Our representation of types reflects this:

data Ty = TyUnit | TyLift ?

DSEL types can be converted to host language types in the obvious way:

interpTy : Ty→ ?

interpTy TyUnit 7→ ()
interpTy (TyLift A) 7→ A

This representation gives complete flexibility in the choice of domain-specific types. We treat the unit
type specially (rather than simply representing all types as host language types) because it fulfills a
special rôle in the DSEL, and also because it maintains a clear logical separation between host language
types (of type ?) and DSEL types (of type Ty).

5.2. Language Representation

A DSEL program modifies state, and returns a value. Our representation should therefore reflect this:

data Lang : StateIn → StateOut → Ty→ ?

We leave the definitions of StateIn and StateOut open for the moment, since these will depend on the
specific domain. For complete flexibility, we will allow the input and output state to be different types
(this may help, in particular, if an operation adds a new resource to a state modelled as a Vect, since
modifying the index of a Vect involves modifying its type.). Figure 1 gives declarations for the common
DSEL constructs.

data Lang : StateIn → StateOut → Ty→ ? where
LOOP : (count : Nat)→ (body : Lang sin sin TyUnit)→ Lang sin sin TyUnit

| CHECK : Maybe a → (ifJ : a → Lang sin sout ty)→ (ifN : Lang sin sout ty)→
Lang sin sout ty

| ACTION : IO ()→ Lang sin sin TyUnit

| RETURN : interpTy ty → Lang sin sin ty
| BIND : (code : Lang sin sk ty)→ (k : interpTy ty → Lang sk sout tyout)→

Lang sin sout tyout

Figure 1. Common DSEL constructs



Edwin Brady and Kevin Hammond / Correct-by-Construction Concurrency 11

Each constructor of the Lang data type corresponds to a syntactic construct in the DSEL. Since the repre-
sentation of the syntax is parameterised over types, this also means that we can express the DSEL’s typing
rules in the constructors. For example, when given a value in the host language, RETURN constructs a
value in the DSEL. The corresponding constructor in the Lang type reflects this:

RETURN : (val : interpTy ty)→ Lang sin sin ty

A second, equally important, feature of the host language is variable binding. To bind a value, we
compute an expression and continue execution with the context Γ extended with that value. It is not
surprising, therefore, to find that the type of our binding construct is similar to an ordinary monadic bind,
with the addition of the explicit threading of state:

BIND : (code : Lang sin sk ty)→ (k : interpTy ty → Lang sk sout tyout)→
Lang sin sout tyout

Even though our goal is total static safety, dynamic checking of values may still be required in some
cases, and in particular we may need to construct proofs dynamically. We therefore include a CHECK
construct, which takes the result of a host language computation, of type Maybe a , and continues execu-
tion according to the result. Maybe a is an option type, which either carries a value x of type a (Just x ),
or no value (Nothing). Typically, the a will be a dynamically computed proof — in the situation where
a proof is not statically known, we can at least guarantee that a program has carried out any necessary
dynamic checks.

CHECK : Maybe a → (ifJ : a → Lang sin sout ty)→ (ifN : Lang sin sout ty)→
Lang sin sout ty

Embedding a domain-specific language within a host language allows us to exploit the features of the
host language. For example, we can allow IO actions to be executed as follows:

ACTION : IO ()→ Lang sin sin TyUnit

We have also included a bounded looping construct, which allows an expression to be evaluated count
times. In principle, we could include any control structure which is implementable in IDRIS. LOOP
requires that the state is the same on entry and exit of each iteration:

LOOP : (count : Nat)→ (body : Lang sin sin TyUnit)→ Lang sin sin TyUnit

Remark: This LOOP construct implies that a DSEL implemented in this way cannot handle non-
terminating programs. Since IDRIS requires that functions be total, in order to guarantee total correctness
and decidability of type checking as discussed in Section 3, it is not possible to implement an unbounded
looping construct (e.g. a while loop) directly. Although we have not done so, we can choose to imple-
ment an unbounded loop by separating evaluation from execution, as discussed in [16]. The details are
beyond the scope of this paper.

The representation we have defined so far gives us the ability to lift host language values into the
DSEL, to bind values, and to control program flow. These are important components of many state-
managing domain-specific languages. However, until we define StateIn and StateOut , plus the opera-
tions that manipulate them, we will not be able to do anything interesting with our language.



12 Edwin Brady and Kevin Hammond / Correct-by-Construction Concurrency

6. A DSEL For Concurrent Programming

In this section we will complete our DSEL for concurrent programming by defining: i) the state over
which the DSEL is parameterised; and ii) those operations that affect this state. We define operations for
forking new processes, managing locks on shared variables, and reading and writing shared variables.
For each of these operations we define the pre- and post-conditions informally, as described in Section
4, and show how to encode those properties formally in the host language.

6.1. Resources

We begin by defining formally the state over which the DSEL is parameterised, and the properties the
state can satisfy. The resources which interest us are shared typed variables, which must be locked before
they are accessed (read or written). In formalising lock management, we therefore need to define the lock
state of a resource, and the type of the value associated with the resource. We choose to allow locks to
be nested, so the lock state also needs to represent the number of times each resource has been locked:

data ResState : ? where

RState : N→ Ty→ ResState

Resource state is per thread. When a resource is locked, thread execution can only proceed if no other
thread currently holds that lock. Otherwise, execution blocks until the lock is released. Nesting locks
means that one thread may lock a resource multiple times, and the resource will only become free when
the lock count reaches zero. This behaviour models what happens at the operating system level, using
pthreads.

Furthermore, when we run the program, we will need access to the concrete data that is associated
with the resource. In our case, this concrete data is the semaphore that controls access to the resource (of
type Lock, as defined in Section 3.3), plus the value itself. Since a value is a piece of mutable external
state, we must store it in an IORef. The Resource type is parameterised over its state, meaning that
we are always able to link a resource, which exists only at run-time, with its state which is known at
compile-time.

data Resource : ResState→ ? where

resource : IORef (interpTy a)→ Lock→ Resource (RState n a)

Programs in our DSEL exist relative to a collection of statically-known resources. It is convenient to
represent this collection as a Vect: resources can then be easily referred to by defining an index into this
Vect. The index is stored as a Finn where n is the number of resources. We can now define StateIn and
StateOut in concrete terms:

data Lang : Vect ResState tin → Vect ResState tout → Ty→ ?

This type declaration gives us the potential to create or destroy resources within a DSEL program. In
this paper, however, we assume that the resources are known in advance. It turns out that this restriction
is in fact minor: while resources cannot be created within the DSEL, they can be freely constructed
dynamically on an ad-hoc basis in the host language, and subsequently managed in a thread-safe manner
by passing them to a DSEL program. This follows common practice [38, 45], where choosing an ordering
for requesting locks and using it consistently prevents circular chains of requests. The dependent type
system allows us to guarantee this ordering is preserved.



Edwin Brady and Kevin Hammond / Correct-by-Construction Concurrency 13

6.2. Resource Validity

To prevent deadlock, as we have discussed in Section 4.2, we can define a priority ordering on resources,
and prove that higher priority resources are always locked earlier than lower priority resources. Storing
resources as a vector gives a convenient ordering, namely the position of the resource in the vector. We
treat resources which appear earlier in the vector as lower priority. In order for the static property to
hold, we must then prove that whenever we lock a resource, no lower priority resource has already been
locked. The predicate PriOK enforces this property. It can be constructed if, and only if, everything
before a given index in a vector is an unlocked resource.

data PriOK : (i : Fin n)→ (xs : Vect ResState n)→ ? where
isFirst : PriOK f0 (cons x xs)

| isLater : PriOK i xs → PriOK (fs i) (cons (RState 0 t) xs)

It is worth considering briefly how we arrive at this definition. Consider first how we might check PriOK
dynamically, returning a truth value. It is always safe to lock the first resource, since it has the lowest
possible priority. Clearly, any non-first resource can only be locked if the first resource (i.e., the one with
the lowest priority) is unlocked:

isPriOK : Fin n → Vect ResState n → Bool

isPriOK f0 (cons x xs) 7→ True

isPriOK (fs i) (cons (RState 0 t) xs) 7→ isPriOK i xs
isPriOK 7→ False

The branch which returns True corresponds to the isFirst constructor, and the branch which makes the
recursive call corresponds to the isLater constructor. The patterns correspond to the indices in PriOK.
There is no constructor for the branch which returns False. It follows that arriving at the definition of
such a predicate corresponds directly to implementing the relevant dynamic check. In fact, we can make
this test more informative as follows:

isPriOK : (i : Fin n)→ (xs : Vect ResState n)→ Maybe (PriOK i xs)
isPriOK f0 (cons x xs) 7→ Just isFirst

isPriOK (fs i) (cons (RState 0 t) xs) 7→ mMap isLater (isPriOK i xs)
isPriOK 7→ Nothing

Where we previously returned False, we now return Nothing. In addition, instead of simply returning
True to indicate that the priority is okay, we now also explain why it is okay. We use mMap to lift
isLater into the Maybe type. We will also often need static knowledge of a resource state. To do this we
use the ElemIs predicate, defined in section 3.1, to express that we must know the state of a particular
resource before we can proceed.

6.3. Forking a process

When we fork a new process, the resource state of the new process holds no locks. We express this
statically, with a predicate:



14 Edwin Brady and Kevin Hammond / Correct-by-Construction Concurrency

data AllUnlocked : (xs : Vect ResState n)→ ? where
nilUn : AllUnlocked nil

| consUn : AllUnlocked xs → AllUnlocked (cons (RState 0 t) xs)

In most cases, proofs of this predicate will be of the form consUn (consUn . . . nilUn), corresponding to
the number of locks, with the type checker being able to fill in extra details by unification. We have a
partial decision procedure for this predicate:

allUnlocked : (xs : Vect ResState n)→ Maybe (AllUnlocked xs)

If xs is statically known, and all elements are unlocked, this function computes a proof of
AllUnlocked xs . While this is a common case, other more complex cases will require hand written
proofs. The restriction is necessary to preserve safety: once a child process has been forked, it has no
knowledge of lock state transitions in its parent. If we allow a forked process to use a resource locked
by its parent, but the parent releases the lock before the child uses it, then we have violated a safety
condition. Furthermore, allowing this would mean a resource was locked simultaneously by multiple
threads! We add the following constructor to Lang to capture this restriction:

FORK : AllUnlocked tins → (proc : Lang tins tins TyUnit)→ Lang tins ′ tins ′ TyUnit

6.4. The Full DSEL

We are now in a position to add the constructors for the domain-specific operations, which are FORK,
LOCK, UNLOCK, READ and WRITE. For each of these, we will given informal pre- and post-conditions
before giving a formal definition in IDRIS. Our approach is related to Hoare Type Theory [36] in that
we express these conditions on each operation, but has the important distinction that we impose domain-
specific conditions on domain-specific operations, which allows the DSEL programmer to concentrate
on the domain-specific correctness properties.

To lock a resource, we must know that it is safe to lock in the current state. This requires the
conditions:

Pre-condition The resource we lock is lower priority than any currently locked resources.

Post-condition For a resource with k nested locks, after locking, it has k + 1 nested locks.

We add the following constructor to Lang which expresses these conditions formally:

LOCK : ElemIs i (RState k ty) tins → (PriOK i tins)→
Lang tins (update i (RState (s k) ty) tins) TyUnit

This type expresses that locking a value modifies the state, incrementing the lock count on resource i .
The update function simply updates the value at a position in a Vect: it is convenient to be able to lift
this into the type of LOCK:

update : (i : Fin n)→ A→ Vect A n → Vect A n

We can arrive at the necessary proofs either through static knowledge (e.g., we know at compile-time
that no other resources have been locked by this process), or by a dynamic check with CHECK and an
application of isPriOK. Unlocking a resource makes sense only if the resource has been locked at least
once. It has the following conditions:



Edwin Brady and Kevin Hammond / Correct-by-Construction Concurrency 15

Pre-condition The resource to be unlocked has k +1 nested locks (i.e. it has been locked by the current
thread).

Post-condition For a resource with k + 1 nested locks, after unlocking, it has k nested locks.

Stated formally as part of our DSEL, these conditions give:

UNLOCK : ElemIs i (RState (s k) ty) tins →
Lang tins (update i (RState k ty) tins) TyUnit

Once again, the UNLOCK operation updates the state, this time by reducing the lock count. The purpose
of locking a resource is, of course, to prevent incorrect accesses to and modifications of those resources
in concurrently executing processes. Therefore, we allow reading from and writing to a shared variable
only when we can prove that the resource which protects it is locked. The conditions are:

Pre-condition The resource to be read from (or written to) has k +1 nested locks (i.e. it has been locked
by the current thread).

Post-condition None.

Stated formally as part of our DSEL, these conditions give:

READ : ElemIs i (RState (s k) ty) tins → Lang tins tins ty
WRITE : interpTy ty → (ElemIs i (RState (s k) ty) tins)→ Lang tins tins TyUnit

Neither of these operations modifies the resource state — the state carries only how many times a resource
is locked and the type of the variable. However, neither is valid unless there is a proof that the resource
has previously been locked. Such proofs can be constructed dynamically or statically, as required.

Figure 2 gives the complete language representation. By using the DSEL approach, and considering
each operation in turn we are able to give our intuition for the correctness requirements of each rule,
before formalising our intuition in the host language itself. We believe that a significant advantage of the
dependently typed approach is that the implementation and formalisation are the same thing, and that we
can consequently read typing rules of the DSEL directly from the Lang data type.

6.5. Executing the DSEL

Of course, while theoretically interesting, our DSEL would be of no practical use unless we had a means
of actually executing programs. Fortunately, implementing the interpreter is largely straightforward and
consists of executing the relevant low-level operations for each command.

Environments

The interpreter for the DSEL is defined relative to an environment, which carries the concrete values
associated with each resource. Environments of type Env can be defined generically as mappings from a
vector of some type to a vector of interpretations of that type:

data Env : (R : ?)→ (iR : R → ?)→ (xs : Vect R n)→ ? where
Empty : Env R iR nil

| Extend : (res : iR r)→ Env R iR xs → Env R iR (cons r xs)



16 Edwin Brady and Kevin Hammond / Correct-by-Construction Concurrency

data Lang : Vect ResState tin → Vect ResState tout → Ty→ ? where
READ : (locked : ElemIs i (RState (s k) ty) tins)→ Lang tins tins ty

| WRITE : interpTy ty → (locked : ElemIs i (RState (s k) ty) tins)→
Lang tins tins TyUnit

| LOCK : (locked : ElemIs i (RState k ty) tins)→ (priOK : PriOK i tins)→
Lang tins (update i (RState (s k) ty) tins) TyUnit

| UNLOCK : (locked : ElemIs i (RState (s k) ty) tins)→
Lang tins (update i (RState k ty) tins) TyUnit

| LOOP : (count : N)→ (body : Lang tins tins TyUnit)→ Lang tins tins TyUnit

| FORK : AllUnlocked tins → (proc : Lang tins tins TyUnit)→ Lang tins ′ tins ′ TyUnit

| CHECK : Maybe a → (ifJ : a → Lang tins touts ty)→ (ifN : Lang tins touts ty)→
Lang tins touts ty

| ACTION : IO ()→ Lang tins tins TyUnit

| RETURN : (val : interpTy ty)→ Lang tins tins ty
| BIND : (code : Lang tins ts1 ty)→ (k : interpTy ty → Lang ts1 touts tyout)→

Lang tins touts tyout

Figure 2. Concurrency DSEL syntax representation

Looking up a value in such an environment then corresponds to looking up a value in the vector of types:

envLookup : (i : Fin n)→ Env R iR xs → iR (vlookup i xs)
envLookup f0 (Extend t env) 7→ t
envLookup (fs i) (Extend t env) 7→ envLookup i env

In our DSEL, we have a vector of ResState, where the interpretation is Resource. We define resource
environments as follows:

REnv : (xs : Vect ResState n)→ ?

REnv xs 7→ Env ResState Resource xs

At various points, we will need to extract references and resource locks from the environment. To lookup
a resource lock, using llookup, we simply take an index into the environment. To obtain the reference,
using rlookup, we also take the ElemIs proof that a value exists at the index. Although not strictly
necessary, type-checking applications of rlookup is assisted if the type of the resource is named.

llookup : {xs : Vect ResState ln} → (i : Fin ln)→ REnv xs → Lock

rlookup : {xs : Vect ResState ln} → (p : ElemIs i (RState k ty) xs)→ REnv xs →
IORef (interpTy ty)



Edwin Brady and Kevin Hammond / Correct-by-Construction Concurrency 17

In the definitions of llookup and rlookup, xs is an implicit argument. Its type is given to assist the
type checker, but a value is not given explicitly in calls to these functions.

The Interpreter

The interpreter takes an environment, and returns a pair of the new environment (since programs modify
state) and the result of program execution (since programs are typed). We assume that the concrete
resources contained in the environment are distinct, i.e., no IORef or Lock appears more than once.

interp : REnv tyin → Lang tyin tyout T → IO (Pair (REnv tyout) (interpTy T ))

The type expresses that the interpreter must modify the environment to correspond exactly with any
modifications to the resource state in the program. Additionally, if a program returns a type T , the
interpreter must return the meta-language interpretation of T .

Implementation of the interpreter is generally straightforward — the complete definition is given in
Figure 3. The rules for LOCK and UNLOCK require the use of an implicit argument i , which is the
index into the vector of resources used by the proof argument3. Since lock and unlock are low level
operations, we also require functions lockEnv and unlockEnv to update the type of the environment,
to make it consistent with the resource state given in the DSEL.

lockEnv : {i : Fin n} → {xs : Vect ResState n} → (ElemIs i (RState k ty) xs)→
(REnv xs)→ (REnv (update i (RState (s k) ty) xs))

unlockEnv : {i : Fin n} → {xs : Vect ResState n} → (ElemIs i (RState (s k) ty) xs)→
(REnv xs)→ (REnv (update i (RState k ty) xs))

Since this DSEL is implemented in a less restrictive host language, there is a chance that programs
will access resource and concurrency primitives directly, rather than through the interpreter. We must
therefore ensure that only the interpreter is allowed to access the concurrency primitives. While we have
not yet implemented a module system for IDRIS, conventional techniques will allow us to hide the lock,
unlock and fork operations behind an interface which exposes only Lang and interp.

6.6. Example

To demonstrate how this language works in practice, we consider a simple example where the resource
state is statically known. In this example, we have two shared variables, both N, and we set up the vector
of resource states as follows:

nats = cons (RState 0 (TyLift N)) (cons (RState 0 (TyLift N)) nil)

It is helpful (and indeed trivial) to define a proof that all of these are initially unlocked:

unl nats : AllUnlocked nats
unl nats = consUn (consUn nilUn)

We can then write a program (Figure 4) which loops, incrementing each variable and printing their sum
on each iteration. For readability, we have used a Haskell-like do-notation. Although this is not yet
implemented in IDRIS, it is a trivial transformation to insert calls to BIND in place of the do-notation.
3In fact, optimisation of the Lang data type [8], as implemented in IDRIS, means that i is the only argument stored for each of
LOCK and UNLOCK.



18 Edwin Brady and Kevin Hammond / Correct-by-Construction Concurrency

interp : REnv tyin → Lang tyin tyout T → IO (Pair (REnv tyout) (interpTy T ))
interp env (READ p) 7→ do val ← readIORef (rlookup p env)

return (MkPair env val)
interp env (WRITE v p) 7→ do writeIORef (rlookup p env) v

return (MkPair env ())
interp env (LOCKi p pri) 7→ do lock (llookup i env)

return (MkPair (lockEnv p env) ())
interp env (UNLOCKi p) 7→ do unlock (llookup i env)

return (MkPair (unlockEnv p env) ())
interp env (ACTION io) 7→ do io

return (MkPair env ())
interp env (RETURN val) 7→ return (MkPair env val)
interp env (CHECK (Just a) j n) 7→ interp env (j a)
interp env (CHECK Nothing j n) 7→ interp env n
interp env (FORK u proc) 7→ do fork (do f ← interp env proc

return ())
return (MkPair env ())

interp env (BIND code k) 7→ do coderes ← interp env code
interpBind coderes k

interpBind : Pair (REnv tyin) A→ (A→ Lang tyin tyout B)→
IO (Pair (REnv tyout) (interpTy B))

interpBind (MkPair env val) k 7→ interp env (k val)

Figure 3. The DSEL interpreter

This program is thread-safe — the type ensures that all resources are unlocked on exit, and the language
statically ensures that resources are locked in priority order. Since the resources are statically known, the
proofs of ordering are easy to construct. LOCK and UNLOCK do, in fact, refer to resources by proofs
of membership in the list, constructed using first and later. We refer to locks by their proofs, because
first is always a proof (of type ElemIs) that the first resource has the correct number of locks. Given a
proof p that the nth resource has the correct number of locks, later p is a proof that the (n + 1) resource
has the correct number of locks. We have left two holes in this program, 21 and 22. Since dependently
typed programs often contain proof terms, it can be convenient (and aid readability) to leave gaps for
those proof terms. The type-checker will infer the required type for each hole, which the programmer is
required to fill in later. This helps the programmer concentrate on the algorithm without having to keep
in mind all of the necessary proof obligations. In this case the obligations are:



Edwin Brady and Kevin Hammond / Correct-by-Construction Concurrency 19

count : Nat→ String→ Lang nats nats TyUnit

count n pid 7→ LOOP n (do LOCK (later first) 21

LOCK first 22

numa ← READ first

WRITE (s numa) first)
numb ← READ (later first)
WRITE (s numb) (later first)
UNLOCK (later first)
UNLOCK first

ACTION (putStrLn ((pid++"Val:")
++show (plus numa numb)))

Figure 4. Counting example

21 : PriOK (fs f0) (cons (RState 0 N) (cons (RState 0 N) nil))
22 : PriOK f0 (cons (RState 0 N) (cons (RState (s 0) N) nil))

The first hole requires a proof that it does not violate any priority orderings to lock the second resource.
This is solved by isLater isFirst, which is valid because the first resource is unlocked. The second hole
requires a corresponding proof for the first resource, under the assumption that the second one is already
locked. This is solved by first. If we try to lock the resources in the wrong order, or do not lock the
resources before reading from or writing to the resource, type-checking will fail because these proofs
will not unify with the function type. If it does type-check, however, we can safely execute the program
in multiple threads:

threadcount : Lang nats nats TyUnit

threadcount 7→ BIND (FORK unl nats (count ten "thread"))
(λu.count ten "main")

Note that this program uses the host language in several places. In particular, the count function takes
two parameters that were passed using the host language. To execute this program, we need to construct
an initial environment containing the relevant concrete locks and references:

mkNatEnv : IO (REnv nats)
mkNatEnv 7→ do r1 ← newIORef 0

l1 ← newLock 1
r2 ← newIORef 0

l2 ← newLock 1
return (Extend (resource r1 l1 ) (Extend (resource r2 l2 ) Empty))

We can then run the program by calling the interpreter with this initial environment.



20 Edwin Brady and Kevin Hammond / Correct-by-Construction Concurrency

runThreads : IO ()
runThreads 7→ do env ←mkNatEnv

p ← interp env threadcount
return ()

Efficiency

By introducing the intermediate interpreter stage, which eventually executes the low level instructions,
we may seem to have introduced some abstraction overhead. We do not yet have an optimising compiler
for IDRIS — our implementation is an interpreter that has been written in Haskell — and we therefore
do not yet have realistic performance results. However, we believe that a compiled implementation
of our approach should be competitive with a direct implementation: since interp is a total function,
and programs such as runThreads and count above are known at compile-time, the interpreter can
be partially evaluated against the input program. “Staging” an interpreter in this way, resulting in a
translator to the host language, is a well-known technique [11, 46] that applies equally to dependently
typed languages [7, 39], as to the conventionally typed languages where it has so far been applied.

6.7. Correctness

When implementing a new language with a strong type system, especially one with strong safety prop-
erties such as our DSEL, it is important that certain meta-theoretic properties are satisfied, and that the
actual implementation corresponds to the typing rules. Since our host language is strong enough to ex-
press the typing rules directly, it is easy to show that the implementation of a DSEL program corresponds
to the specification given by the Lang typing rules, and that many of the required properties therefore
follow directly from the definitions that we have given. We do not need separate proofs for these proper-
ties because the implementation is the proof. It therefore remains to show that the DSEL representation
satisfies the required domain-specific properties.

Responsibilities and Assumptions

We begin by identifying the responsibilities of each language layer (i.e. IDRIS and the DSEL) and the
DSEL programmer:
IDRIS as the host language, is responsible for providing the necessary low level operations, including
forking, locking and creating references to shared memory. This is under the assumption that the low
level implementation (we have used POSIX threads [9]) is correct. We have also assumed that the
underlying type theory satisfies important meta-theoretic properties of other type theories such as strong
normalisation, subject reduction and uniqueness of types [14].
The DSEL, along with its interpreter, is responsible for managing the low level operations safely with
respect to a given set of resources. This is under the assumption that all of the resources passed to it are
distinct.
The Programmer is responsible for constructing the set of resources used by a DSEL program, ensuring
that all locks and references are distinct, and for fulfilling any proof obligations necessary for a program
to be well-typed. This set of resources may be either static or dynamic, but in either case remains constant



Edwin Brady and Kevin Hammond / Correct-by-Construction Concurrency 21

throughout the DSEL program’s execution. Additionally, in the current system, it is the programmer’s
responsibility to use the DSEL interface to concurrency operations rather than the low level interface.
Remark: We have made the assumption that all IORefs and Locks are distinct in the vector of resources
passed to the interpreter. The DSEL representation, however, is independent of its implementation,
therefore an alternative implementation of the interpreter could require a proof that resources are distinct.
This would not change the form of any DSEL programs, but would change the way they were invoked.

Domain-Specific Properties

Programs in our DSEL satisfy two domain-specific properties, by construction, due to the design of the
DSEL: i) resource access is safe, in that it is impossible to access a resource which is not locked; and
ii) deadlock cannot occur. The first property is satisfied because all resource accesses, i.e. READs and
WRITEs, must be accompanied by a proof that they are locked in the current state. The second property
is satisfied by enforcing a priority ordering on resources which eliminates the possibility of cyclic chains
of resource requests [10]. The absence of deadlock in particular is hard to prove, because it requires
dealing with all of the possible execution orders of systems of concurrent threads. By eliminating this
necessary condition for deadlock, we obviate the need for any further formal statement of reachability or
responsiveness of concurrent systems.

General Properties

The interpreter for the DSEL inherits properties of the host language by giving it a sufficiently informa-
tive type:

interp : REnv tyin → Lang tyin tyout T → IO (Pair (REnv tyout) (interpTy T ))

This type expresses the following properties directly, which are verified by the type-checker:

• Interpretation is type preserving — a program with type T will always return a value in the host
language interpretation of T .

• Interpretation maintains state according to the typing rules, in that the input and output environ-
ments are defined relative to the input and output states. This is important, because the typing
rules, especially side-conditions on locking and resource access, rely on maintaining state.

A significant advantage of our approach is that these properties follow directly from the implementation.
If we change, or extend, either the typing rules or the interpreter, the type-checker will ensure that they
remain consistent with each other. Correctness therefore relies on the specification of the DSEL itself
being strong enough to express the required domain-specific properties.

6.8. The Next 700 Domain-Specific Embedded Languages?

We have described the implementation of our DSEL in two stages, namely: i) implementing a generic
set of control constructs; and ii) implementing the resource management operations. Since the resource
management is independent of the control structures, and we may wish to apply this technique to other



22 Edwin Brady and Kevin Hammond / Correct-by-Construction Concurrency

resources (such as file handles or even stack/heap usage), it is desirable to make this separation explicit
in the code. An alternative approach to adding constructors to our initial DSEL, would therefore be to
parameterise it over the state-handling fragment of the language, and to add a new constructor which lifts
the sub-language into the main language:

data Lang : (L : StateIn ′ → StateOut ′ → Ty)→ StateIn → StateOut → Ty→ ? where
lift : (prog : L sin sout T )→ Lang L sin sout T
| . . .

We can then define the resource language independently:

data RLang : Vect ResState tin → Vect ResState tout → Ty→ ? where
READ : (locked : ElemIs i (RState (s k) ty) tins)→

RLang tins tins ty
| WRITE : (val : interpTy ty)→

(locked : ElemIs i (RState (s k) ty) tins)→
RLang tins tins TyUnit

. . .

The interpreter for Lang is similarly parameterised over an interpreter for RLang. This follows
Landin [27] in that it clearly separates, as Landin puts it, a “basic set of given things” (the resource
language) from the “way of expressing things in terms of other things” (the main language). To imple-
ment a new state-managing DSEL requires only the definition and the interpreter for the sub-language.
Although we have not yet explored this, we anticipate that further development of this approach will also
allow the composition of DSELs from smaller component DSELs.

7. Bank Accounts Revisited

In the example we gave in Section 6.6, the resources that we used were statically known. In many
cases, this will be sufficient. For example, in an embedded system that manages shared access to specific
hardware components, all the available resources will be known in advance of execution. What happens,
however, if the resources are not statically known, for example in a database? We return to the motivating
example of Section 2 and consider how our DSEL can be used to implement safe concurrent access to
bank accounts. Each account is a shared resource, of which there can be an arbitrary number. We will
implement the moveMoney function, where the accounts concerned will be determined dynamically.
The account data we hold is simply the amount of money that is available in that account:

data AccountData : ? where

MkAcc : Int→ AccountData

Each account is associated with a resource, since each concurrent function should be parameterised over
a list of n resource states, where n is decided at run-time.

accounts : (n : N)→ Vect ResState n
accounts 0 7→ nil

accounts (s k) 7→ cons (RState 0 (TyLift AccountData)) (accounts k)



Edwin Brady and Kevin Hammond / Correct-by-Construction Concurrency 23

moveMoney(sum, sender, receiver) {
lock(sender);
lock(receiver);
sendFunds = read(sender);
recvFunds = read(receiver);
if (sendFunds < sum) {

putStrLn("Insufficient funds");
return;

}
write(sender, sendFunds - sum);
write(receiver, recvFunds + sum);
unlock(receiver);
unlock(sender);

}

moveMoney : Int→ Fin n → Fin n →
Lang (accounts n) (accounts n)

TyUnit

moveMoney sum sender receiver 7→
do let sendEl = elemIs sender

let recvEl = elemIs receiver
LOCK sendEl 21

LOCK recvEl 22

sendFunds ← READ sendEl
recvFunds ← READ recvEl
CHECK (isLT sendFunds sum)

(ACTION (putStrLn "Insufficient funds"))
(λ p. do WRITE sendEl (sendFunds − sum)

WRITE recvEl (recvFunds + sum)
UNLOCK recvEl
UNLOCK sendEl)

Figure 5. Money transfer pseudo-code with DSEL implementation

We assume there is a mapping from account numbers and sort codes to a resource identifier (i.e. an index
into the vector of accounts). We initialise the system by constructing a number of accounts, associating
each with a lock and an initial sum of money, which, in our somewhat unrealistic world, we will distribute
equally among the accounts:

mkAccounts : (n : N)→ IO (REnv (accounts n))
mkAccounts 0 7→ return Empty

mkAccounts (s k) 7→ do kaccs ←mkAccounts k
aref ← newIORef (MkAcc 10000)
alock ← newLock 1
return (Extend (resource aref alock) kaccs)

Let us now try to implement a function which moves money between accounts.

7.1. First attempt

Figure 5 gives the pseudo-code for a money transfer, and shows how we implement that pseudo-code
directly in the DSEL. Our dependent type system will reject this program for two reasons: firstly, because
some branches do not unlock resources; and secondly because, as discussed, there is no guarantee that
locking the resources in the given order respect the priority ordering which the type system requires to
guarantee absence of deadlock. In the remainder of this paper, we will see how the DSEL can be used to
write a correct implementation of moveMoney and similar programs.
Remark: The let binding we use here is really a macro, since elemIs sender has a different type



24 Edwin Brady and Kevin Hammond / Correct-by-Construction Concurrency

at each instance, despite being syntactically the same. We have used let here for readability, but in the
actual implementation, we use its expansion instead.

The problems that we identified in Section 2 manifest themselves in the following ways:

• After the CHECK, in the branch where there are insufficient funds in the sender’s account, there
are no UNLOCK instructions. The state on exit then has two locked resources, and the type of
moveMoney requires that the state on exit has all resources unlocked. This is a type error.

• The proof term 22 is impossible to fill in, since we cannot guarantee that the sender, being locked
first, is always the highest priority resource. 21 is fine, because it is always possible to lock a
resource when everything is unlocked.

The type system cannot identify whether the types of 21 and 22 are inhabited. It is therefore the pro-
grammer’s responsibility to identify why a given program satisfies the required properties. The first
problem is easy to fix — we can simply lift the unlocking outside the CHECK. To solve the second prob-
lem, which could cause deadlock, we consider the ordering of resources in order to justify the presence
of a valid priority ordering to the DSEL.

7.2. Dynamic priority ordering

If nothing is locked yet, then we know that it is always safe to lock a resource. Furthermore, if it is safe
to lock a resource at index j , and we know that a resource at index i has lower priority, then it is safe to
lock i . In this way, we can construct a chain of priority-ordering proofs. First, we define LTFin, which
gives the result of an informative comparison of Fins:

data LTFin : Fin n → Fin n → ? where
ltO : LTFin f0 (fs k)

| ltS : LTFin x y → LTFin (fs x ) (fs y)

Using the knowledge that i is lower priority than j , we can then construct the proof that it is safe to lock,
by induction over the instance of LTFin:

lockEarlier : LTFin i j → PriOK j xs → PriOK i xs
lockEarlier ltO locked 7→ isFirst

lockEarlier (ltS p) (isLater locked) 7→ isLater (lockEarlier p locked)

Since resources could be used in any order at run-time, we require a comparison operation which provides
the appropriate ordering proof:

data CmpFin : Fin n → Fin n → ? where
lSmall : LTFin x y → CmpFin x y

| rSmall : LTFin y x → CmpFin x y
| finEq : (x = y)→ CmpFin x y

cmpFin : (x : Fin n)→ (y : Fin n)→ CmpFin x y

Finally, the cmpFin function is implemented in the obvious way by recursion over x and y .



Edwin Brady and Kevin Hammond / Correct-by-Construction Concurrency 25

7.3. A correct implementation

To correct the possible deadlock, we must first check, dynamically, which resource has the higher priority.
Using the informative comparison cmpFin means that we will obtain an ordering proof which can
be given to lockEarlier to give the required priority ordering proof. We can construct these proofs
dynamically, given the resource ordering. We write a helper, moveMoney′, as follows, considering
only the case where the receiver is higher priority:

moveMoney′ : Int→ (sender : Fin n)→ (receiver : Fin n)→
(ord : CmpFin sender receiver)→
Lang (accounts n) (accounts n) TyUnit

moveMoney′ sum sender receiver (lSmall p)
7→ do let sendEl = elemIs sender

let recvEl = elemIs receiver
LOCK recvEl 21

LOCK sendEl 22

sendFunds ← READ sendEl
recvFunds ← READ recvEl
CHECK (isLT sendFunds sum)

(ACTION (putStrLn "Insufficient funds"))
(λ p. do WRITE sendEl (sendFunds − sum)

WRITE recvEl (recvFunds + sum)
)

UNLOCK sendEl
UNLOCK recvEl

To fill in 22, we use the knowledge that receiver is a higher priority than sender , and apply lockEarlier
to the proof of 21.

22 = lockEarlier p 21

The proof of 21 is simple, because nothing is yet locked. We use the following lemma to construct a
proof that the first resource we lock has a valid priority:

unlockedAcc : (i : Fin n)→ PriOK i (accounts n)
unlockedAcc f0 7→ isFirst

unlockedAcc (fs k) 7→ isLater unlockedAcc

Then, to fill in 21, we can simply apply the lemma:

21 = unlockedAcc receiver

The other case proceeds similarly. We must also consider the case where the sender and receiver are the
same — there is no static check to prevent this, but in this case the function need not do anything. We
can complete moveMoney as follows:



26 Edwin Brady and Kevin Hammond / Correct-by-Construction Concurrency

moveMoney : Int→ (sender : Fin n)→ (receiver : Fin n)→
Lang (accounts n) (accounts n) TyUnit

moveMoney sum s r
7→ moveMoney′ sum s r (cmpFin s r)

This function is guaranteed to lock accounts before use, to be deadlock free, and to release any resources
it uses before its exit, whether or not an error has occurred.
Remark: The program here is fairly simple, and the proof of lock safety more tricky. It is worth noting,
however, that the complexity of the proofs is a function of the complexity of the lock structure rather than
of the program itself. So however complex a function that manipulates two accounts, the complexity of
the proofs will not increase. Conversely, a program that manipulates more than two accounts simultane-
ously, or interleaves locking/unlocking of multiple accounts, will require more reasoning. Additionally,
we note (as described in Section 3.2) that none of the proofs are retained at run-time, so the presence
of proof terms in the program does not affect the efficiency of execution in any negative way. In some
cases, we may even find the presence of proof terms has a positive effect, in that some run-time checking
which would otherwise be necessary may be proved to be unnecessary, and so discarded.

7.4. Code reuse

This implementation, in which we implement moveMoney twice, once for each priority ordering,
highlights an inconvenient, but not insurmountable, problem with code reuse in IDRIS. The body of the
function is the same in each case, reading and writing the sum of money, but the lock ordering and the
types of the required proofs are different. We can, of course, lift out the body into a common polymorphic
auxiliary function that is parameterised over the necessary proofs. However, this requires the program-
mer to pay too much attention to the intermediate types. These intermediate types (which express, for
example, the information about which resources are currently locked) are inferred by unification. Un-
fortunately, since full type inference for dependently typed languages is not possible, lifting the body
into a separate function means that the programmer, rather than the type-checker, is required to work out
the intermediate type. In this kind of situation, we would expect that, in a more mature programming
language, the type-checker would be able to perform some limited type inference on auxiliary functions.

8. Related work

Reasoning about locks and shared memory is an instance of a more general problem of resource usage
verification, where resources could include files, heap usage, running time, power consumption, among
many others. Previous approaches to resource usage verification have typically been based on developing
special-purpose type systems, post-hoc program analysis, or a combination of these techniques. For
example, Marriott et al [32] use a deterministic finite-state automaton (DFA) to describe the allowed
states of resources. Their approach relies on a program analysis that models the approximate behaviour
of the program, and that then checks that this behaviour conforms to the DFA. In contrast, we effectively
place the permissible states in the types of the DSEL. This allows us to relate the real program, rather
than an approximate model, to the permitted behaviour and so to guarantee correctness by construction,
but without the limitations of a DFA. In particular, unlike a DFA, we are not limited to a predetermined
number of states — the states we need (such as the types and values of shared variables, or the depth



Edwin Brady and Kevin Hammond / Correct-by-Construction Concurrency 27

of locking) can be decided at run-time, as long as the relevant proof terms can be constructed. Various
special-purpose type systems have also been developed. For example, [48] can be used to enforce security
properties and [25, 44] can be used to prevent deadlock and race conditions. Igarashi and Kobayashi
have also developed a type system [22] for guaranteeing resource properties. While these approaches
seem promising as specialised applications, we prefer to build on a strong general-purpose type system,
thereby avoiding the need to develop new soundness proofs and a new type-checking implementation.
By separating the generic and specific components of a DSEL, as described in Section 6.8, our approach
allows the construction of composable domain-specific embedded languages. However, the generality
and precision of our approach comes at a price: DSEL programs require embedded proofs which must
be provided by the programmer.

An alternative approach involves exploiting program monitoring [29] to dynamically check that a
program adheres to security constraints, and to take remedial action before a dangerous action is exe-
cuted. This has the advantage that no changes or annotations are needed, and there is no requirement to
construct a priority ordering, but the disadvantage that checks are made at run-time so no guarantee can
be made that a program will execute successfully. Our approach differs in that we are able to statically
guarantee that remedial action will never be necessary. It follows that the overheads of monitoring can
be completely avoided in our case. Again, this is at the cost of requiring explicit proof terms.

An obvious approach to dealing with resources is to use linear types, e.g. [18, 19]. Linear types are
ideal for capturing many resources properties because the type system enforces that a value can be used
only once, and indeed linear types have been used to analyse communication in concurrent programming
languages [21, 26], using an alternative approach which guarantees that concurrent channels are used
once. We have avoided linear types primarily because we believe that dependent types are sufficiently
strong to deal with the explicit management of resources within a uniform type system, but also because
linearity itself does not capture the priority ordering, so an alternative model of concurrent resources is
needed. The approach we have taken reflects common practice among concurrency practitioners [38, 45],
in which a priority ordering for resources is constructed and resource accesses are dynamically checked.

There are several other approaches to concurrent programming which are not based on a traditional
view of locks on shared resources, and so do not require a potentially arbitrary priority ordering to be
set up. For example, software transactional memory [17] works in terms of transactions, without regard
to what other threads may be doing, with a final commit operation which validates and applies transac-
tions. While this has benefits for correctness, there are still efficiency problems being addressed [13, 31].
Erlang4 conversely follows the actor model [1] in which processes send messages rather than share data.

Like our work, YNot [37] aims to reason about side-effects in imperative, in this case using dependent
types in COQ. In this system, imperative programs are annotated with Hoare Logic style formal pre-
and post-conditions. A related approach using Hoare Type Theory to reason about transaction based
concurrency is presented in [35]. In contrast, we prefer to add the minimal required imperative features to
functional programs, and the DSEL approach allows us to focus on domain-specific constraints. Finally,
while we have not explored this in detail, some parts of our approach may be adaptable to weaker
type systems, such as Generalised Algebraic Data Types (GADTs) [40] in Haskell or Omega [43], or
perhaps even by enforcing resource constraints using Haskell type classes, as suggested by Kiselyov and
Shan [24]. The real benefit we obtain from using full dependent types is the ability to lift arbitrary values
and functions directly into types, thus giving us the ability to refer to state directly.

4http://www.erlang.org/



28 Edwin Brady and Kevin Hammond / Correct-by-Construction Concurrency

9. Conclusion

Concurrent programming is becoming increasingly important, as multi-core architectures become in-
creasingly common. As a result, it is critical that programming languages provide sufficient support to
allow programmers to take full advantage of the opportunities for concurrent program execution. We have
shown how to develop Domain-Specific Embedded Languages in a dependently typed meta-language,
IDRIS. These DSELs are capable of statically guaranteeing correct resource usage (with respect to access
and deadlock prevention) by construction. We have separated the specific state-handling constructs from
the generic constructs, meaning that our approach is applicable in any situation in which the effects of
each operation on state can be expressed. This could cover, for example, file management operations,
some aspects of network protocols, or memory consumption. Specifying some aspects of a program be-
haviour directly in its type has allowed us to directly derive some important safety properties of programs
written in the concurrent DSEL:

• No two threads will access a resource simultaneously, since a resource access must be accompanied
by a proof that the process has the lock on the resource.

• Resources cannot be requested in an order which may lead to deadlock. Although it is undecidable
in general whether a program will deadlock, by eliminating one of the necessary conditions we
can conservatively guarantee it will never occur.

• All resources are released on exit from a process.

In developing this new approach to Domain-Specific Embedded Language implementation, we have
undertaken a substantial exercise in dependently typed programming. We have exploited the strengths
of dependent types, in particular the strong correctness properties, but also identify some weaknesses
in current tools. In particular, code reusability can be difficult. Generic code which is syntactically the
same in more than one place, such as the body of each branch of moveMoney′, can nevertheless have
different types in each place. Lack of full type inference means that the programmer must write down
such types, which can be complex. It may therefore be beneficial to identify circumstances where types
can be inferred, e.g. following the bidirectional type-checking ideas of [30]. Furthermore, we often find
ourselves implementing the same data structure several times, with different indices, e.g. Vect and Env
are both implemented as lists. It would be preferable to implement functions over such structures once,
generically. Nevertheless, if we do want total static safety, we cannot expect it to come totally for free.

We have tried as far as possible to push the safety guarantees into the DSEL implementation, so
that the programmer can concentrate on the details of the specific problem, rather than worrying about
detailed correctness proofs. By defining the required preconditions in advance, in the definition of the
DSEL data type, the type checker informs a programmer of the properties they need to show to complete
the correctness proof. However, requiring programs to be provably deadlock free means that an applica-
tion programmer must think about why resources are requested in the right order. Where resources are
statically known, the proofs are straightforward, but where resources are dynamic, as in our bank account
example, some simple reasoning is required. The DSEL author can help this reasoning by providing a
library of useful lemmas, such as lockEarlier and a generic version of unlockedAcc. In all cases, the
application programmer is able to construct such ordering proofs dynamically — the typing rules will
still ensure that deadlock does not occur, since they will ensure that any necessary checks are executed.



Edwin Brady and Kevin Hammond / Correct-by-Construction Concurrency 29

9.1. Future work

There are a number of areas that would repay further study, relating to both the design and implemen-
tation of DSELs and the host language IDRIS itself. Firstly, we have dealt here with one aspect of
concurrent programming, namely ensuring that (nested) locks are created before accessing a shared re-
source and that they are released when the program finishes. However, we have only dealt with one
type of lock — we may wish to deal with locks which cannot be nested (which we can do simply by
limiting the lock count to one), with semaphores, or with shared variables. We would expect to be able
to handle the latter by extending the type of FORK, but would then also need to deal with inter-thread
synchronisation and communication. Secondly, modern operating-system kernels require similar lock-
ing operations. On modern multi-core processors, it is especially important that resources are managed
efficiently to reduce bottlenecks in accessing I/O devices. Our method provides a promising research
direction for operating-system and device-driver programmers to exploit modern processors while using
safe abstractions. Thirdly, we believe our approach to be applicable in a number of other contexts. One
area we have begun to investigate is network protocol correctness [3]. In this context, one especially
interesting empirical measure of the value of the approach would be whether correct-by-construction
programs could detect errors in existing protocols. Fourthly, one important resource usage problem we
have previously looked at using other methods [6], but have not addressed in this paper, is the memory
usage of functional programs. While we have previously analysed heap usage bounds with dependent
types, it has proved more problematic to deal with stack bounds, since, unlike data structures or general
heap, stacks do not increase in size monotonically throughout a program’s execution. The method we
have described here seems a promising way to address this problem, however, because the BIND op-
eration provides a mechanism to track the changes in the resource state at each stage of the program’s
execution. Finally, the main weakness in our approach is the requirement on the programmer to provide
proof terms to guarantee that locks are taken in priority order. While these proof terms are generally easy
to construct in practice, it would be preferable for them to be constructed automatically by a (possibly
partial) decision procedure where possible. We believe that for our approach to be usable in practice,
and for resource analysis in general, domain-specific embedded languages will require domain-specific
decision procedures.

References
[1] G. Agha, I. Mason, S. Smith, and C. Talcott. A foundation for actor computation. Journal of Functional

Programming, 7(1):1–72, 1997.

[2] P. Amey. Correctness by Construction: Better can also be Cheaper. CrossTalk: the Journal of Defense
Software Engineering, pages 24–28, Mar. 2002.

[3] S. Bhatti, E. Brady, K. Hammond, and J. McKinna. Domain specific languages (DSLs) for network protocols.
In International Workshop on Next Generation Network Architecture (NGNA 2009), 2009.

[4] E. Brady. Practical Implementation of a Dependently Typed Functional Programming Language. PhD thesis,
University of Durham, 2005.

[5] E. Brady. Ivor, a proof engine. In Implementation and Application of Functional Languages 2006, volume
4449 of LNCS. Springer, 2007.

[6] E. Brady and K. Hammond. A dependently typed framework for static analysis of program execution costs.
In Proc. Implementation of Functional Languages (IFL 2005), volume 4015 of LNCS, pages 74–90. Springer,
2006.



30 Edwin Brady and Kevin Hammond / Correct-by-Construction Concurrency

[7] E. Brady and K. Hammond. A verified staged interpreter is a verified compiler. In Proc. Conf. Generative
Programming and Component Engineering (GPCE ’06), 2006.

[8] E. Brady, C. McBride, and J. McKinna. Inductive families need not store their indices. In Types for Proofs
and Programs 2003, volume 3085. Springer, 2004.

[9] D. R. Butenhof. Programming with POSIX Threads. Addison Wesley, 1997.

[10] E. Coffman, M. Elphick, and A. Shoshani. System deadlocks. ACM Computing Surveys, 3(2):67–78, 1971.

[11] K. Czarnecki, J. O’Donnell, J. Striegnitz, and W. Taha. DSL implementation in MetaOCaml, Template
Haskell, and C++. In Domain Specific Program Genearation 2004, volume 3016 of LNCS. Springer, 2004.

[12] C. Elliott and P. Hudak. Functional reactive animation. In International Conference on Functional Program-
ming, pages 163–173, June 1997.

[13] R. Ennals. Software transactional memory should not be abstraction free. Technical Report IRC-TR-06-052,
Intel Research, 2006.

[14] H. Goguen. A Typed Operational Semantics for Type Theory. PhD thesis, University of Edinburgh, 1994.

[15] K. Hammond and G. Michaelson. Hume: a Domain-Specific Language for Real-Time Embedded Systems. In
Proc. Conf. Generative Programming and Component Engineering (GPCE ’03), Lecture Notes in Computer
Science. Springer-Verlag, 2003.

[16] P. Hancock and A. Setzer. Interactive programs in dependent type theory. In P. Clote and H. Schwichtenberg,
editors, Proc. of 14th Ann. Conf. of EACSL, CSL’00, Fischbau, Germany, 21–26 Aug 2000, volume 1862,
pages 317–331. Springer-Verlag, Berlin, 2000.

[17] T. Harris, S. Marlow, S. Peyton Jones, and M. Herlihy. Composable memory transactions. In PPoPP’05:
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, 2005.

[18] C. Hawblitzel. Linear types for aliased resources. Technical Report MSR-TR-2005-141, Microsoft Research,
2005.

[19] M. Hofmann and S. Jost. Static prediction of heap space usage for first-order functional programs. In Proc.
POPL 2003 — 2003 ACM Symp. on Principles of Programming La nguages. ACM, 2003.

[20] P. Hudak. Building domain-specific embedded languages. ACM Computing Surveys, 28A(4), December
1996.

[21] A. Igarashi and N. Kobayashi. Type-based analysis of communication for concurrent programming lan-
guages. In SAS ’97: Proceedings of the 4th International Symposium on Static Analysis, pages 187–201,
London, UK, 1997. Springer-Verlag.

[22] A. Igarashi and N. Kobayashi. Resource usage analysis. In Symposium on Principles of Programming
Languages, pages 331–342, 2002.

[23] N. Jin and J. He. Towards a truly concurrent model for processes sharing resources. In Proc. 3rd IEEE
International Conf. on Soft. Eng. and Formal Methods, pages 231–239, Washington, DC, USA, 2005. IEEE
Computer Society.

[24] O. Kiselyov and C.-C. Shan. Lightweight static resources: Sexy types for embedded and systems program-
ming. In Draft Proc. Trends in Functional Programming (TFP ’07), 2007.

[25] N. Kobayashi. A type system for lock-free processes. Inf. Comput., 177(2):122–159, 2002.

[26] N. Kobayashi, B. C. Pierce, and D. N. Turner. Linearity and the pi-calculus. ACM Trans. Program. Lang.
Syst., 21(5):914–947, 1999.



Edwin Brady and Kevin Hammond / Correct-by-Construction Concurrency 31

[27] P. Landin. The next 700 programming languages. Communications of the ACM, 9(3), March 1966.

[28] D. Leijen. Parsec, a fast combinator parser. http://www.cs.uu.nl/∼daan/parsec.html, 2001.

[29] J. A. Ligatti. Policy Enforcement via Program Monitoring. PhD thesis, May 2006.

[30] A. Löh, C. McBride, and W. Swierstra. A tutorial implementation of a dependently typed lambda calculus,
2009. To appear in Fundam. Inf.

[31] V. J. Marathe and M. Moir. Efficient nonblocking software transactional memory. In PPoPP ’07: Proceedings
of the 12th ACM SIGPLAN symposium on Principles and practice of parallel programming, pages 136–137,
New York, NY, USA, 2007. ACM.

[32] K. Marriott, P. Stuckey, and M. Sulzmann. Resource usage verification. In In Proc. of First Asian Symposium,
APLAS 2003, pages 212–229. Springer-Verlag, 2003.

[33] C. McBride. Epigram: Practical programming with dependent types. Lecture Notes, International Summer
School on Advanced Functional Programming, 2004.

[34] C. McBride and J. McKinna. The view from the left. Journal of Functional Programming, 14(1):69–111,
2004.

[35] A. Nanevski, P. Govereau, and G. Morrisett. Towards type-theoretic semantics for transactional concurrency.
In Workshop on Types in Language Design and Implementation (TLDI’09). ACM, 2009.

[36] A. Nanevski, G. Morisett, and L. Birkedal. Polymorphism and separation in Hoare Type Theory. In Proc.
2006 International Conf. on Functional Programming (ICFP 2006), pages 62–73. ACM, 2006.

[37] A. Nanevski, G. Morrisett, A. Shinnar, P. Govereau, and L. Birkedal. Ynot: dependent types for imperative
programs. In International Conf. on Functional Programming (ICFP 2008), pages 229–240. ACM, 2008.

[38] S. Oaks and H. Wong. Java Threads. O’Reilly, 3rd edition, 2004.

[39] E. Pašalı́c, W. Taha, and T. Sheard. Tagless staged interpreters for typed languages. In Proc. 2002 Interna-
tional Conf. on Functional Programming (ICFP 2002). ACM, 2002.

[40] S. Peyton Jones, D. Vytiniotis, S. Weirich, and G. Washburn. Simple unification-based type inference for
GADTs. In Proc. 2006 International Conf. on Functional Programming (ICFP 2006), 2006.

[41] S. L. Peyton Jones and P. Wadler. Imperative functional programming. In Proc. 20th ACM Symposium on
Principles of programming languages, pages 71–84, New York, NY, USA, 1993. ACM.

[42] C. Popeea and W.-N. Chin. A type system for resource protocol verification and its correctness proof. In
PEPM ’04: Proceedings of the 2004 ACM SIGPLAN symposium on Partial evaluation and semantics-based
program manipulation, pages 135–146, New York, NY, USA, 2004. ACM Press.

[43] T. Sheard. Languages of the future. In ACM Conference on Object Orientated Programming Systems,
Languages and Applicatioons (OOPSLA’04), 2004.

[44] K. Suenaga and N. Kobayashi. Type-based analysis of deadlock for a concurrent calculus with interrupts. In
Proc. European Symposium On Programming (ESOP ’07), 2007.

[45] H. Sutter. Use lock hierarchies to avoid deadlock. Dr Dobb’s, December 2007.

[46] W. Taha. Multi-stage Programming: Its Theory and Applications. PhD thesis, Oregon Graduate Inst. of
Science and Technology, 1999.

[47] D. A. Turner. Elementary strong functional programming. In First International Symposium on Functional
Programming Languages in Education, volume 1022 of LNCS, pages 1–13. Springer, 1995.

[48] D. Walker. A type system for expressive security policies. In Twenty-Seventh ACM SIGPLAN Symposium on
Principles of Programming Languages, pages 254–267, 2000.


