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Abstract. We consider the problem of efficient representation of de-
pendently typed data. In particular, we consider a language TT based
on Dybjer’s notion of inductive families [11] and reanalyse their gen-
eral form with a view to optimising the storage associated with their
use. We introduce an execution language, ExTT, which allows the com-
menting out of computationally irrelevant subterms and show how to use
properties of elimination rules to elide constructor arguments and tags
in ExTT. We further show how some types can be collapsed entirely at
run-time. Several examples are given, including a representation of the
simply typed A-calculus for which our analysis yields an 80% reduction
in run-time storage requirements.

1 Introduction

Dependent type theory provides programmers with more than an integrated
logic for reasoning about program correctness. It allows more precise types for
programs and data in the first place, strengthening the typechecker’s language
of guarantees. We have richer function types Vz:S. T which adapt their return
types to each argument; we also have richer data structures which do not just
contain but explain data, exposing and enforcing their properties.

Moreover, we may reasonably expect more static detail about programs and
data to yield better optimised dynamic behaviour. We need neither test what
is guaranteed nor store what is determined by typechecking. Pollack’s implicit
syntax [24] already supports the omission of much redundant information from
concrete syntax for similar reasons.

This paper idenitifies some space optimisations which significantly reduce
the storage overheads associated with inductive families in the sense of [11].
These are data-indexed collections of mutually recursive datatypes, DZ, available
in systems such as those underlying LEGO [16], CoqQ [9], ALF [18] and also
the language we use here — EPIGRAM [20]. A common example for illustrative
purposes is Vect, the family of list types indexed by element type and length:

A:x n:N a : A v :Vectdk
data VectAn : % ma : Vect A0 a:v : VectA(sk)



1.1 Programming with Inductive Families

Function types over inductive families can use specific indices to require and
ensure properties of inputs and outputs — e.g., compatibility of length:

u,v : VectNn vAdd

let vAdd u v : VectNn

€ e e
vAdd (z::u) (y=v) = (z+y) = vAdd uv

The precise type prevents some bogus choices of output — we can only return &
on the first line, only a :: on the second. The input possibilities become narrower
too — adding (z :: u) to €, or vice versa, is not even an issue.

By the same token, the potential for optimisation is clear. Once we know
whether the first argument is € or (z :: u), we can presuppose the form of the
second argument — we can ignore it in the £ case; in the :: case, we can safely
project out y and v without checking the constructor tag. Moreover, if we inspect
n, implicitly passed to vAdd, we need never check Vect constructor tags at all.

We impose invariants on inductive families to improve reliability, but this
paper seeks to exploit them for performance. Such optimisations are not available
in conventional functional languages — there is no way that inspecting one
argument can justify presuppositions about another. If we want to write vector
addition using ordinary lists, we must not only consider how to handle length
mismatch in our code, we must also effectively test for it at run-time.

1.2 Underlying Type Theory

Following [20], EPIGRAM programs elaborate to well typed terms in a type theory
TT, based on Luo’s UTT [15] with inductive families [11] and equality as in [19].
Here is its syntax:

t =k (type of types) | z  (variable)
| Vz:t. t (function space) | D  (inductive family)
| Az:t. t (abstraction) |c  (constructor)
|

| tt (application) D-E (elimination operator)

As usual, we may abbreviate the function space Vz:S. T by § — T if z is not
free in T. There is an infinite hierarchy of predicative universes, x; : *;4+1. We
leave universe levels to the machine, as in [12].

Computation is by g-reduction for A-abstractions and (-reduction for elim-
ination operators. A data declaration typically elaborates to declarations of a
family D : Vi: 1. *, constructors ¢, and an elimination operator D-E equipped
with ¢-schemes. We write s — ¢t if s 8- or t-reduces to ¢. In the usual way, every
well typed TT term ¢ computes to a weak head-normal form WHNF(t).

A typical constructor has a type like this:!

c:Va:ADA —-...»D7—=+DF

! To ease presentation, we keep the non-recursive arguments & to the front and permit
only first-order recursive arguments — neither restriction is crucial to this work.



For example, elaborating our Vect example, we acquire Vect : VA: . Vn:N. x,
and constructors:

€:VA:*x Vect AO
i VA:x VE:N.Va: A.Vv:Vect A k. Vect A (sk)

Note that the variables left schematic in the data declaration have become ex-

plicitly quantified arguments. In naive implementations these take up space —

every Vect An stores the sequence 0,... ,n—1, and n references to A. Even with

perfect sharing, this is quite an overhead — the space implications for families

with more complex invariants are quite drastic if this problem is left unchecked.
Basically, the elimination operator, D-E has a type of this form:

Vi:I.Vz:Di. (indices, target)
VP:Vi:I.Di— . (motive)
Vme: Ya:A. Yy :D#. ... Vy;:DF.

P#Hy—...>»P7?y — P3(cdy). p (methods)

Pix
The target, with given indices, explains what to eliminate; the motive ex-
plains what is to be achieved by the elimination; the methods explain how to
achieve the motive for each canonical form the target can take, given appropriate
inductive hypotheses. The associated i-rules for definitional equality have this
form:

I'FD-Ef(c@j)Pm = maj(D-E7 g P1) ... (D-EF; y; P 1)

When indices are used uniformly, such as the element type of Vect, we adapt the
basic D-E slightly, abstracting these parameters once for all. This yields:

Vect-E : VA:x.Vn:N. Vv:Vect A n.
VP:Vn:N. Vv:Vect A k. x.
Vm.:P O (e A).
Vm..:Vk:N.Va: A.Vv:Vect Ak. (P kv)— P (sk) (= Ak av).
Pnuw
Vect-E A 0 (eA) Pmem.= m
Vect-E A (sk)(::Akav)Pme:m.= m.kav(Vect-E Ak v P m.m.)

Implementing Vect-E appears to require non-linear matching — there are
repeated arguments in both patterns, suggesting a run-time conversion check.
In fact this is not needed — the repeated arguments coincide in any well typed
application of Vect-E. We do not need to recheck the duplicate A or £ in the
patterns (¢ A) or (:: Ak a v). So why store them?

In this paper we show how to streamline the implementation of t-rules so
that unnecessary testing is avoided. We introduce extensions to the TT syntax
for marking parts of terms to be ignored or removed. So equipped, we consider
which constructor arguments can be ignored, and then play a similar game with
constructor tags. Finally, we show how to eliminate some structures entirely and
make a larger example smaller — the simply typed A-calculus.



1.3 Related Work

Correctness preserving program transformations [10, 23] provide a basis for many
optimisations in simply typed functional languages. In this paper we use substi-
tution transformations to mark unused terms for deletion in a similar manner
to Berardi’s pruning of simply typed A-terms [4]. Program transformation tech-
niques have also been applied to type theory; Magaud and Bertot [17] show an
approach to changing data representation by transforming the constructors and
elimination rule of a family and use this technique to change from unary natural
numbers to a more efficient binary representation.

The CoQ program extraction tool [22,14] attempts to remove purely logical
parts of proofs in order to produce executable programs. Qur approach differs
in that we do not separate the predicative and impredicative type universes and
attempt to remove all terms which are unused.

Callaghan and Luo [7] use the well-typedness of elimination rules to avoid
checking of repeated arguments, a technique which we apply and extend in this
paper. Xi’s DML [26] also uses dependent types for optimisation, eliminating
dead code [27] and array bounds checking [28].

2 Implementing Reduction Rules for Datatypes

The elimination operator D-E is the only means TT provides for inspecting
data in the inductive family D. If we optimise D-E’s reduction behaviour, we
optimise the programs which elaborate in terms of it. Moreover, if any data in
the representation of D’s elements is not needed by D-E, then it is never needed
at run-time. Let us look more closely at how ¢-rules are implemented.

2.1 Pattern Syntax and its Semantics

We implement i-rules D-E #; = ¢; by pattern matching, marking with [-] those
parts of patterns p which well typed terms are presupposed to match. Unmarking
these parts gives back a term, |p|.

p =21z (pattern variable) | [t] (presupposed term)
| ¢ g (constructor pattern) | [c] 7 (presupposed-constructor pattern)

For each «-law, as above, we write a t-scheme, D-E 7; — ¢;
with |7;| = i; and e; a term over p;’s pattern variables. The (-schemes are
then compiled into an efficient case-expression [2]. However, our pattern syntax
will facilitate the discussion without delving into those details.

The partial function MATCH tries to compute a matching substitution for
a pattern and term (MATCHES lifts MATCH to sequences in the obvious way):

MATCH( z ,t) = t/z

MATCH( ¢ 7 , ) => MATCHES(7,7) if WHNF(t) => ¢’ fandc = ¢’
MATCH( [t'] , t) == ID

MATCH([] 7, t) = MATCHES(f,f) if WHNF(t) => ¢’
MATCHES( - , - ) = ID

MATCHES(p 7, t f) = MATCH(p, t) o MATCHES(F, )



The first two lines of MATCH test constructors and bind pattern variables as usual
in implementations of pattern matching from [21] onwards. The remaining two
lines, however, presuppose the successful outcome of testing. To justify these
presuppositions, we shall require that each t-scheme is I'-respectful of well
typed instances, i.e.

if 'FD-Ef: T and MATCHES(f;,1) => o then '+ D-Eo|f;| =D-Ef : T

A set of t-schemes, D-E ; — ¢; is I-well-defined if, for any I'+ D-E £ : T of
the right arity, with a constructor-headed target, we have MATCHES(7;, f) =0
for exactly one i. This yields c-reduction D-Ef +— oe;. A set of t-schemes
which is I'-respectful and I'-well-defined for all I" is said to implement the
corresponding ¢-rules.

2.2 Standard Implementation

Theorem. For D : Vi:1I. %, with typical ¢ : V@:4.D# — ... » D7 — D5,
this typical (-scheme implements the ¢-rules (the standard implementation):

D-E[§](cay) Pm — mcaj(D-E7, y Pm) ... (D-E7; y; P m)
Proof. For any I', if ' - D-E §' (cd' §') P’ m' : T then

= =

MATCHES([8] (c@ §) P m, 8" (cd' §') P' m') = o
but matching the other (-schemes fails, so these schemes are I'-well-defined.

Moreover, o is @' /@oy' /o P'/Po' /m. Typechecking, c@'§' : D(d'/doy'/§)§ =
D o3. Hence 03 = § as D-E § (c @' §') is well-typed. Hence our typical scheme
is I'-respectful. O

The standard implementation comments out the indices — just as well, be-
cause there is no guarantee that they generally take the constructor form which
explicit matching requires. For example, Vect-E has standard implementation

Vect-E[A] [0] (¢A4) P m.m.+— m
Vect-E [A] [sk] (: Ak av) Pm. m; — m.kav(Vect-EAk v P m. m;)

2.3 Alternative Implementations

Where the indices of a constructor’s return type do happen to resemble construc-
tor or variable patterns, we are free to consider alternative implementations of
the corresponding ¢-schemes. We may certainly comment out a pattern variable
from the target if we can recover it by matching an index. For example, this is
also an implementation of Vect-E:

Vect-E A 0 (e[4]) P mem. — m,

Vect-E A (s k) (::[A] [k] a v) P me m.. = m. k av (Vect-E Ak v P m. m..)

But we can do better than that. There is no need to check the constructor
tags on both the length and the target — one check will do. We may take either



(t) Vect-E A [0] (e[4]) Pm.m.— m
Vect-E A ([s]| k) (:: [4] [k] a v) P mc m., = m.kav (Vect-E Ak v P m. m..)

or, instead, privileging index length over vector contents

(f)Vect-EA 0 ([e] [AD) Pm.m. — me
Vect-E A (s k) ([::] [4] [k] a v) P mec m.. = m. k av (Vect-E Ak v P m. m..)

In the sequel, we show how to choose good alternative implementations for
elimination operators by systematically exploiting the presence of constructor
symbols in indices. This leads naturally to space optimisations, where we do not
merely comment out unnecessary data from patterns — we delete them entirely
from the representation of datatypes.

2.4 ExTT — an execution language for TT with deleted terms

We introduce ExTT, an execution language for terms in TT. ExTT extends TT’s
syntax with deleted terms and patterns {t}, and also with deleted constructor
patterns {¢ 7 corresponding to untagged tuples {¢} . We extend the operational
semantics thus:

MATCH({t}, {t}) =
MATCH({g 7, t) = MATCHES(f, 1) if WHNF(t) = ({} f)

We are careful to distinguish ({¢ {f}), which is represented by the empty tu-
ple, from {c i}, which is deleted altogether. The actual evaluation of terms in
ExTT can be by any standard method, such as normalisation by evaluation [1,
5], compilation to G machine code [13] or program extraction [14].

The unmarking operation |-| takes both patterns and terms in ExTT back to
terms in TT by stripping out both [] and {} marks. Terms in ExTT arise only
by optimisations from well typed TT terms hence ExTT needs no typing rules
provided that these optimisations are safe.

We specify an optimisation by giving a substitution [-] from TT identifiers
to ExTT terms, 1D by default, together with the optimised ExTT i-schemes. For
i-rules I' - D-E f; = ¢;, these have form D-E 7; — d;, where |7;| = %, |di| =
and every undeleted free variable in d; is a pattern variable in p;. For all I', these
schemes must be I'-well-defined in the obvious way, and I'-respectful in that

if '+ D-E7 : T and MATCHES(F;, [{]) = o
then there exists a substitution 7 such that I' - 7 |o(D-E §i;)| = D-E# : T

The role of 7 is to instantiate the variables free in e;, but deleted in d;—these
are not needed when executing ExTT terms, hence they need not be matched.
In the following sections, we establish several such optimisations.

3 Eliding Redundant Constructor Arguments

Recall the alternative implementation of Vect-E (} above) which matches A and
k in the indices rather than the target. When can we do this, in general?



Whenever c @, ¢ b:D3 implies a; = b;, we say that the ith argument of ¢
is forceable. eg., the A argument to ¢ is forceable since if e a, € b : Vect A0
then clearly a = b = A. For ::, A and k are forceable in the same way.

Constructor arguments which have been commented out owing to their rep-
etition in a t-scheme are forceable. This is to be expected; such repeated argu-
ments arise from the patterns describing constructor indices.

Consider a typical constructor, fully applied to variables, cd i : D . If we
express § as |J| for any patterns 7, then any a; appearing as a pattern variable in
P is forceable, by injectivity of constructors. We call these arguments concretely
forceable since they can be retrieved in constant time by pattern matching on
the indices.

To express § as |p|, we write a program to extract from a term a linear pattern
with its variable set:

PAT (V,z)= (zUV,z) fz gV

paT (V, c_')=> (V',LazY(c, 7)) if paTs (V, 1) = (V',P)
PAT (V, t )= (V,][¢])

PATS( V, - )= (V,")

PATS( V,t?)———>(V”,pp)

if PAT (V,t) = (V',p) and paTs (V', 1) = (V", §)
LAzY( ¢, [p]) = [c 7]
LAZY(c, P )= [c] P otherwise

For our typical constructor ¢, we can extract the patterns which D-E will match
by PATS (0, 5) = (V, §). If an argument a; € V then q; is concretely forceable.
It is instantiated by matching 7, hence we may presuppose it when we match
the target, yielding the same result. Hence, we may then choose the alternative
implementation:
D-Ej(calVly) Pm — mc--- wherealVl=[a] ifaeV
olVl = a otherwise

Theorem. The following is an optimisation (forcing):
forc : Va:A.D7 — ... D7 - D3 where pats (0,3) = (V,7)
take [c] = Aa;7.calVt g
D-Ef(cat§) P — mcdyj(D-E# y Pm) ... (D-E7; y; P m)
where oV} = {a} ifa € V
oV} = 4 otherwise

Proof. Clearly, |f| = & and |c V' j| =cdy, soif 'FD-E¥ (cd'§)P'm' : T
then, as before, § = (@'/d o §'/¥)3. Now,
§'/9)5) = cacv(a;/a;)
e @' §') = ongv(ej/a) o §'/7
Hence any matching substitution o for the left-hand side satisfies

D |o(D-E p (c @V} §) P )| = D-E & (c @ §') P' i/

MATCHES(, (@' /d o

do
matcHES(c 2t} 7, ¢



So these schemes are I'-respectful. They are clearly I'-well-defined, as they dis-
criminate on the target’s constructor. [J

For our Vect example, forcing is given by:

[e] = M. e {4}
[::] = AA; k5050 {4} {k} a v

Vect-E A [0] (e{4) Pm.m.— m
Vect-E A ([s| k) (:: {4} {k} a v) P me m.. = m.kav (Vect-E Ak v P m. m..)

In the implementation the deleted arguments really are removed from the now
fully applied constructors. This is safe because these terms are only decomposed
by Vect-E which does not expect the deleted arguments.

4 Eliding Redundant Constructor Tags

Recall the second alternative implementation of Vect-E (f) where case selection
is by analysis of the length index rather than the target itself. For which types
can we do case selection on an argument other than the target?

Ifcd,c'b : D3implies c = ¢/, we say that the family D is detaggable. Vect
is detaggable because the length index determines whether the constructor is €
(if the length index is 0) or :: (if the length index is sk).

For any set of t-schemes, if the index patterns are already mutually exclusive,
we can decide which scheme applies without checking the target’s constructor
tag. The following program checks if two patterns are guaranteed to match dis-
joint sets of terms:

DISJIOINT( ¢ P, ¢’ §)=> true ifc # ¢’
DISJOINT( ¢ J, ¢ § )= Ji.DISIOINT(p;, ¢;)
)

DISJOINT( [c] P, [¢] §) = Ti.DISIOINT(p;, ¢;)
DISJOINT( p , ¢ )= false otherwise

Of course if we are to match on the indices then we must actually examine
their constructors, so the previous lazy definition of PATS is not sufficient. We
compute the patterns we need for this optimisation with EPATS — the same as
PATS but with LAZY replaced by EAGER:

EAGER(cC,p)=cJ
Given a family D with constructors ¢; : V#:X;.D5 where EPATS (0, 5) =
(Vi, Bi), we say D is concretely detaggable if
Vi # j. 3k. DISIOINT(pik, pjr) = true
Theorem. We may optimise (detag) such a concretely detaggable D thus:
[ci] = M. {c} 2(
D-Ep; ({c} Z"H P = ¢

Proof. These schemes are I'-respectful for all I" by the same argument as for



forcing—the switch to eager patterns does not affect the set of variables matched
from the indices, nor the success of matching well-typed values. Deleting the
constructor in the target can only improve the possibility of a match, but the
disjointness condition directly ensures that the schemes remain I'-well-defined.
O

For our Vect example, detagging is given by:

[e] = M. {} {4}
[::] = A4;k;a50. {3 {4} {k} a v

Vect-EA 0 {4 Pm.m.— m,
Vect-E A (s k) ({} {4} {k} a v) Pme m.. —» m. kav (Vect-E Ak v P m.m.)

We achieve this space optimisation at the cost of using eager rather than
lazy patterns. The number of constructor tests required increases by a constant
(possibly zero!) factor and indices may sometimes be computed where they would
previously be ignored. Clearly a real implementation would minimise the number
of eager patterns required to make the distinction. An analysis of this space/time
trade-off is beyond the scope of this paper, but for Vect it seems likely to be
worthwhile since we have swapped one constructor test for another.

5 Run-Time Optimisation

In our Vect-E example, we have already deleted both € and its argument. We
might be tempted to go a step further, and comment out that entire target.

Vect-E A 0 [{e} {4}] P me m.. — m,
However, this ¢(-scheme is not respectful and breaks subject reduction thus:

.;x:Vect AOF Vect-EAOxz Pm.m..: POz
— me:PO0e

The pattern ({&} {4}) may not test tags or extract arguments, but it still only
matches targets whose weak head-normal forms are constructor applications.
The optimisations we have seen thus far are safe to use in any context, and we
need to reduce under binders when performing the equality checks which ensure
that EPIGRAM programs elaborate to well typed terms.

However, at run-time, we can employ a much more restricted notion of com-
putation, reducing only in the empty context, £. In this scenario, we can exploit
the adequacy property of TT — if £ F ¢ : D 5 then WHNF(t) is c £ for some 7
— to gain further optimisations, not available in a general context.

In effect, we may employ weaker criteria for alternative implementations of
elimination operators in run-time execution. We say that a run-time optimi-
sation is given by a substitution and t-schemes in ExTT as before, except that
these schemes need only be &£-respectful and E-well-defined.

The adequacy property tells us that the target will always match a construc-
tor pattern at run-time, hence we may safely presuppose a pattern from which



no information is gained, as suggested above. Moreover, by applying this obser-
vation inductively, we can sometimes extract another, more drastic optimisation
from the guarantee of adequacy at run-time.

6 Collapsing Content-Free Families at Run-Time

Consider the less than or equal relation, declared and elaborated as follows:

z,y : N p: 2y
data <y : * where [eO0 : 0<y 1eSp : sz<sy
<:N—=-N-ox

leO : Vy:N. <0y

leS : Vz,y:N. <z y — <(sz) (sy)

The < family describes a property of its indices and stores no other data.
It is not surprising therefore to find that much of its content can be deleted.
Forcing and detagging yield:

[le0] = Ay. ({0} {y})
[leS] = Az;y;p. ({1S} {z} {y} p)
<-E0 y ({0} {y}) P mueo mies — mieo Y

<-E (sz) (sy) ({1eS} {z} {y} p) P 11uco mies
= Mies 2y p (S-Ezyp P meo Mies)

Now we are left with only one undeleted argument, the recursive p in leS.
This argument serves two purposes — firstly it is the target of the recursive call
and secondly it is passed to the method mjes. We might think that p can also be
elided — ultimately it can only by examined by <-E which, by induction, can
be shown never to examine it. In a partial evaluation setting, however, where we
may reduce under binders, we must at least check that the target is canonical for
reduction to be possible. If not, we run the risk of reducing a proof of something
which cannot be constructed, such as 5<4!

At run-time, on the other hand, we never need to check that p is canonical
because the adequacy property tells us that it must be. Hence, at run-time, we
no longer need to store the recursive argument — the entire family collapses:

[leO] = Ay. ({0 y})
[leS] = Az;y;p. ({leS = y p})
[<-E] = Az;y;p; P mieo; mies- <-E z y {p} P mieo mies

For which families can we do this run-time optimisation? If z,y : D § implies
z = y we say that the family D is collapsible. < is collapsible because any value
in z<y is determined entirely by the indices x and y.

<-E0 y {leOy} P mieo mies = mieo y
<-E (sz) (sy) {leS z y p} P mieo Mies
= mies 2y ({p}) (S-E 2 y {p} P mueo mies)



We say a family is concretely collapsible if it is detaggable and for each
constructor ¢ : Va:A.D# — ... D 7; — D8, EPATS (0, 5) = (@, ). That is,
the constructor tag and all the non-recursive arguments are cheaply recoverable
from the indices.

Theorem. We may optimise a concretely collapsible family at run-time:

D-Ep{caygt Pm
= me@ (f}) ... ({g}) (D-E7 fy} P ) ... (D-EF, fy} P )

[c] = Ad;g. (feai})

[D-E] = Xi;z;p; . D-E i {z} P
Proof. These schemes are £-well-defined by the same argument as for detagging.
They are E-respectful because the only possible left-hand sides have the form
EFD-E¥ (cd i) P' W', hence, by disjointness, the only possible match, even
with the target deleted, is with the scheme for ¢, with matching substitution

o= d'/do P'/Pom'/m, binding all the undeleted free variables on the right-
hand side because EPATS (0, §) => (&, 7). Taking 7 = ¥’/ ¥, we see that

E+Tlo(D-Ef{cdj Pm)|=D-EF (ca §)P i

hence these schemes are £-respectful. O

7 Examples

7.1 The Finite Sets

The finite sets, indexed over a natural number n, are a family of types with
n elements. Effectively, they are a representation of bounded numbers and are
declared as follows:

n : N 3 : Finn
data g =, where  m——r o B RN en

The forcing optimisation elides the indices from the elaborated constructors:

[f0] = An.f0 {n}
[fs] = An;i. fs{n}i

After stripping the forceable arguments, the shape of the resulting type
matches that of N — that is, the base constructor takes no arguments and
the step constructor takes a single recursive argument. In principle, any optimi-
sations which apply to N such as Magaud and Bertot’s binary representation [17]
should also apply to Fin. We hope to recover Xi’s efficient treatment of bounded
numbers in this way [28] and perhaps extend it to other forms of validation.



7.2 Comparison of Natural Numbers

The Compare family from [20] represents the result of comparing two numbers,
storing which is the greater and by how much:

m,n_: N where
Comparemn : x ~——— Ity : Comparez (z + (sy))

data

eq : Compare z z

gtz : Compare(y+ (sz))y

Compare is an example of a family which is collapsible, but not concretely
collapsible. Clearly there is only one possible element of Compare m n for each
m and n, and given this element we can extract their difference in constant
time. If we were to collapse Compare we would replace this simple inspection
by the recomputation of the difference each time the same value was used. We
restrict concretely collapsible families to those where the recomputation of values
is cheap. Nonetheless, by forcing, Compare need only store which index is larger
and by how much:

] = Az;y. It {z} y
[eq] = Az.eq{z}
[etl = Az;y. gtz {y}

7.3 Accessibility Predicates

In [6], Bove and Capretta use special-purpose accessibility predicates to prove
termination of general recursive functions. For example, quicksort terminates
on the nil; and it terminates on cons z xs if it terminates on filter (< z) zs and
filter (> z) zs. This is expressed by the gsAcc predicate below:

[ : ListN
data gsAccl : x

where o R gqsAcc nil

gsl : gsAcc (filter (< z) zs)  gsr : gsAcc (filter (> z) zs)
gsCons gsl gsr : qsAcc (cons z zs)

quicksort itself is defined by induction over gsAcc, so a naive implementation
would need to store the proofs. However, gsAcc is concretely collapsible:

[asNil] = {gsNil}
[asCons] => Az; ws; gsl; gsr. {qsCons z xs gsl gsr}

Collapsing replaces computation over qsAcc by computation over its indices,
restoring the intended operational semantics of the original program! These ac-
cessibility predicates are concretely collapsible because their indices are con-
structed from the constructor patterns of programs.



7.4 The Simply Typed A-calculus

We define the simply typed A-calculus in a similar fashion to [20], making ex-
tensive use of inductive families to specify invariants on the data structures. We
begin with STy, representing simple monomorphic types:

— where s,t : STy
STy : x ———— 1 :STy s=1t: STy

data

We represent contexts by Vects of types, Ctx = Vect STy. The explicit length
allows a safe de Bruijn representation of variables, via the Fin family, hence our
untyped terms, Expr, are at least well scoped—the length is forceable for each
constructor:

data EniN

B Xpron i %

where i : Finn S : STy t : Exprsn f,s : Exprn
——— eVari : Exprn eLam St : Exprn eAppf s : Exprn

The Var relation gives types to variables. Var G T states that the ith member
of the context G has type T. Clearly Var is concretely collapsible.

G :Ctxn i :Finn T :STy

data VarGi T :

v : VarGi T

where stop : Var (S:G)f0S popwv : Var(S:G) (fsi) T

Finally, we have the well typed terms, indexed over contexts, the original
raw terms and types. This gives us a particularly safe representation — no
typechecker can return the wrong well typed term. This indexing also enables
us to synchronise terms safely with value environments during evaluation in the
style of Augustsson and Carlsson [3].

G : Cixn e: Exprn T : STy
Term GeT : *
v : VarGi T b: Term (S:G)eT
varv : Term G (eVari) T lamb : Term G (eLam Se) (S = T)

f:Term Gfe(S=T) a: TermGaelS
appfa : Term G (eApp fe ae) T

data

where

Term seems to involve a horrifying amount of duplication. Fortunately, many
of the arguments are forceable and thanks to the indexing over raw terms, Term
is detaggable. After optimisation, this is all that remains:

[var] = An; G;4; T; v. {var} {n} {G} {i} {T} {v}
[lam] = An; G; S; e; T; b. {lam} {n} {G} {S} {e} {T} b
[app] => An; G; fe; S; T' f; ae; a. {app} {n} {G} {fe} S {T} f {ae} a

The only non-recursive arguments which survive are the domain types of ap-
plications. Typechecking thus consists of ensuring that these can be determined.



8 Conclusions and Further Work

The ideas presented here have been tested in a prototype implementation. Exe-
cution in this system is by extraction to a Haskell coding of ExTT values without
the deleted subterms. We have used the GHC profiling tools [25] to assess the
space usage of programs.

Our experiments show a significant reduction in space requirements over a
naive implementation particularly where there is extensive indexing. For vector
operations, a 10-20% saving in memory usage is typical (depending on the length
of the vector), but for the typechecker, a saving of over 80% has been observed.

Although remarkably straightforward, these optimisations only present them-
selves when one takes dependently typed programming seriously. The forcing
optimisation largely overcomes the space penalty of adopting dependent types,
but detagging derives new dynamic benefit from previously unavailable static
information. Collapsing, too, has significant consequences, deleting accessibility
arguments and all the equational reasoning from run-time code, not because we
deem them to be proof-irrelevant, but because they actually are.

We suspect that these optimisations are the first of many. For example, as
we erase forceable indices, it is worth identifying operations which affect nothing
else, such as weaken : Finn — Fin (sn), which embeds a value in a higher
indexed set — this is effectively the identity function. This optimisation applies
wherever functions exist only to manage invariants.

We might also consider the low level implementation of high level types, such
as the natural numbers. By replacing N-E with an appropriate elimination rule
for unbounded binary numbers [17] we can achieve a significant speed-up. Any
other data structure with the same shape after optimisation, eg. Fin, can be
treated similarly. In a practical implementation, such optimisations are essential
for comparable performance to its conventional counterparts.

Optimisation of a new language with a new type system naturally presents
new problems and new opportunities. While we can never hope to produce a
completely optimal program in all cases, this research leads us to believe that
the presence of much more static information can only give us greater scope for
optimisation in both time and space.
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